Advances in Applied Clifford Algebras

, Volume 23, Issue 1, pp 1–14

Projective Cross-ratio on Hypercomplex Numbers

Article

DOI: 10.1007/s00006-012-0335-7

Cite this article as:
Brewer, S. Adv. Appl. Clifford Algebras (2013) 23: 1. doi:10.1007/s00006-012-0335-7

Abstract

The paper presents a new cross-ratio of hypercomplex numbers based on projective geometry. We discuss the essential properties of the projective cross-ratio, notably its invariance under Möbius transformations. Applications to the geometry of conic sections and Möbiusinvariant metrics on the upper half-plane are also given.

Keywords

Cross-ratio Projective linear group Möbius transformation Cycles SL(2,R) Special linear group Clifford algebra dual numbers double numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.School of MathematicsLeeds UniversityLeedsEngland

Personalised recommendations