Skip to main content
Log in

Monogenic Appell Sets as Representations of the Heisenberg Algebra

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In a recent series of papers, Appell sets were generalized from the classical (real and complex) setting to higher dimensions, within the framework of Clifford analysis. The aim of this paper is to exhibit the relation between these Appell sets and the Gegenbauer polynomials, which leads to the construction of a raising and lowering operator for the associated family of polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasiak P., Dattoli G., Horzela A., Penson K.A.: Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering. Phys. Lett. A 352, 7–12 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis. Research Notes in Mathematics 76, Pitman, London, 1982.

  3. S. Bock, K. Gürlebeck, R. Lávička and V. Souček, The Gelfand-Tsetlin bases for spherical monogenics in dimension 3. To appear in Rev. Mat. Iberoamericana.

  4. S. Bock and K. Guerlebeck, On a generalized Appel system and monogenic power series. Math. Meth. Appl. Sci. 33 (2010), 394–311.

    Google Scholar 

  5. Guerlebeck N.: On Appell Sets and the Fueter-Sce Mapping. Adv. Appl. Clifford Algebras 19(1), 51–61 (2009)

    Article  MATH  Google Scholar 

  6. R. Lávička, Complete orthogonal Appell systems for spherical monogenics. To appear in Compl. Anal. Oper. Theo.

  7. Cacão I., Falcão M., Malonek H.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Model 53, 1084–1094 (2011)

    Article  MATH  Google Scholar 

  8. I. Cacão and H. Malonek, On complete sets of hypercomplex Appell polynomials. In: Simos, T. E., Psihoyios, G., Tsitouras, C. (Eds.), AIP Conference Proceedings Vol. 1048 (2008), 647–650.

  9. R. Delanghe, R. Lávička and V. Soucek, The Gelfand-Tsetlin bases for the Hodge-de Rham systems in Euclidean spaces. To appear in Math. Meth. Appl. Sci.

  10. Delanghe R., Sommen F., Souček V.: Clifford analysis and spinor valued functions. Kluwer Academic Publishers, Dordrecht (1992)

    Book  Google Scholar 

  11. D. Eelbode and V. Souček, Gegenbauer polynomials and the Fueter theorem. Submitted.

  12. Erdélyi A., Magnus M., Oberhettinger F., Tricomi F.G.: Higher transcendental functions. Vol. I-II. McGraw-Hill Book Company, New York-Toronto- London (1953)

    Google Scholar 

  13. M. I. Falcão and H. Malonek, Generalized exponentials through Appell sets in \({\mathbb{R}^{n+1}}\) and Bessel functions. In: T. E. Simos, G. Psihoyios, C. Tsitouras, (Eds.), AIP Conference Proceedings, Vol. 936 (2007), pp. 738–741.

  14. Gilbert J., Murray M.: Clifford algebras and Dirac operators in harmonic analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  15. Malonek H.R., Tomaz G.: Bernouilli polynomials and Pascal matrices in the context of Clifford analysis. Discr. Appl. Math. 157(4), 838–847 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Szegö, Orthogonal Polynomials. 4th ed. Providence, Amer. Math. Soc. 1975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eelbode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eelbode, D. Monogenic Appell Sets as Representations of the Heisenberg Algebra. Adv. Appl. Clifford Algebras 22, 1009–1023 (2012). https://doi.org/10.1007/s00006-012-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-012-0330-z

Keywords

Navigation