Abstract
In a recent series of papers, Appell sets were generalized from the classical (real and complex) setting to higher dimensions, within the framework of Clifford analysis. The aim of this paper is to exhibit the relation between these Appell sets and the Gegenbauer polynomials, which leads to the construction of a raising and lowering operator for the associated family of polynomials.
Similar content being viewed by others
References
Blasiak P., Dattoli G., Horzela A., Penson K.A.: Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering. Phys. Lett. A 352, 7–12 (2006)
F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis. Research Notes in Mathematics 76, Pitman, London, 1982.
S. Bock, K. Gürlebeck, R. Lávička and V. Souček, The Gelfand-Tsetlin bases for spherical monogenics in dimension 3. To appear in Rev. Mat. Iberoamericana.
S. Bock and K. Guerlebeck, On a generalized Appel system and monogenic power series. Math. Meth. Appl. Sci. 33 (2010), 394–311.
Guerlebeck N.: On Appell Sets and the Fueter-Sce Mapping. Adv. Appl. Clifford Algebras 19(1), 51–61 (2009)
R. Lávička, Complete orthogonal Appell systems for spherical monogenics. To appear in Compl. Anal. Oper. Theo.
Cacão I., Falcão M., Malonek H.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Model 53, 1084–1094 (2011)
I. Cacão and H. Malonek, On complete sets of hypercomplex Appell polynomials. In: Simos, T. E., Psihoyios, G., Tsitouras, C. (Eds.), AIP Conference Proceedings Vol. 1048 (2008), 647–650.
R. Delanghe, R. Lávička and V. Soucek, The Gelfand-Tsetlin bases for the Hodge-de Rham systems in Euclidean spaces. To appear in Math. Meth. Appl. Sci.
Delanghe R., Sommen F., Souček V.: Clifford analysis and spinor valued functions. Kluwer Academic Publishers, Dordrecht (1992)
D. Eelbode and V. Souček, Gegenbauer polynomials and the Fueter theorem. Submitted.
Erdélyi A., Magnus M., Oberhettinger F., Tricomi F.G.: Higher transcendental functions. Vol. I-II. McGraw-Hill Book Company, New York-Toronto- London (1953)
M. I. Falcão and H. Malonek, Generalized exponentials through Appell sets in \({\mathbb{R}^{n+1}}\) and Bessel functions. In: T. E. Simos, G. Psihoyios, C. Tsitouras, (Eds.), AIP Conference Proceedings, Vol. 936 (2007), pp. 738–741.
Gilbert J., Murray M.: Clifford algebras and Dirac operators in harmonic analysis. Cambridge University Press, Cambridge (1991)
Malonek H.R., Tomaz G.: Bernouilli polynomials and Pascal matrices in the context of Clifford analysis. Discr. Appl. Math. 157(4), 838–847 (2009)
G. Szegö, Orthogonal Polynomials. 4th ed. Providence, Amer. Math. Soc. 1975.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eelbode, D. Monogenic Appell Sets as Representations of the Heisenberg Algebra. Adv. Appl. Clifford Algebras 22, 1009–1023 (2012). https://doi.org/10.1007/s00006-012-0330-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00006-012-0330-z