Advertisement

Advances in Applied Clifford Algebras

, Volume 22, Issue 4, pp 1025–1040 | Cite as

The Balian-Low Theorem for the Windowed Quaternionic Fourier Transform

  • Yingxiong FuEmail author
  • Uwe Kähler
  • Paula Cerejeiras
Article

Abstract

In this paper we present the Balian-Low theorem for the twosided windowed quaternionic Fourier transform (WQFT), a theorem which expresses the fact that time-frequency concentrations are incompatible with non-redundancy whenever Gabor systems form orthonormal bases or frames. Since uncertainty principles are closely connected with representations of the kernel of the Fourier transform under consideration, we construct a suitable representation for the kernel of our two-sided WQFT which in turn provides suitable Gabor systems. We proceed by deriving several important properties of the WQFT, such as shift and modulation operators, a reconstruction formula, orthogonality relations and a Heisenberg uncertainty principle for the WQFT. Finally, we establish the Balian-Low theorem for Gabor orthonormal bases associated with discrete versions of the kernels of the WQFT and of the right-sided WQFT.

Keywords

Gabor system Balian-Low theorem Quaternionic Fourier transform Windowed quaternionic Fourier transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benedetto J.J., Heil C., Walnut D.F.: Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl. 1, 355–402 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    W. Czaja, A. M. Powell, Recent developments in the Balian-Low theorem, Harmonic Analysis and Applications. Birkhäuser, Boston (2006), 79–100.Google Scholar
  3. 3.
    I. Daubechies, Ten lectures on wavelets. CBMS-NSF, Regional conference series in applied mathematics, SIAM Publication, Philadelphia, 1992.Google Scholar
  4. 4.
    K. Gröchenig, Foundations of time-frequency Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001.Google Scholar
  5. 5.
    T. Bülow, Hypercomplex spectral signal representations for the processing and analysis of images. Ph.D. Thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany, 1999.Google Scholar
  6. 6.
    T. A. Ell, Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceeding of the 32nd Conference on Decision and Control, San Antonio, Texas, 1993, 1830–1841.Google Scholar
  7. 7.
    Pei S.C., Ding J.J., Chang J.H.: Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT. IEEE Transactions on Signal Processing 49(11), 2783–2797 (2001)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Bülow T., Felsberg M., Sommer G.: Non-commutative hypercomplex Fourier transforms of multidimensional signals. In: Sommer, G. (eds) Geometric Computing with Clifford Algebras., pp. 187–207. Springer, Heidelberg (2001)Google Scholar
  9. 9.
    Hitzer E.: Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algebras 17(3), 497–517 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hitzer E.: Directional uncertainty principle for quaternion Fourier transform. Adv. Appl. Clifford Algebras 20(2), 271–284 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Sangwine S.J., Ell T.A.: Hypercomplex Fourier transforms of color images. IEEE Transactions on Image Processing 16(1), 22–35 (2007)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    P. Bas, N. Le Bihan, J. M. Chassery, Color image watermarking using quaternion Fourier transform. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, Hong-Kong, (2003), 521–524.Google Scholar
  13. 13.
    Bayro-Corrochano E., Trujillo N., Naranjo M.: Quaternion Fourier descriptors for preprocessing and recognition of spoken words using images of spatiotemporal representations. Journal of Mathematical Imaging and Vision 28(2), 179–190 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bahri M., Hitzer E., Hayashi A., Ashino R.: An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56(9), 2398–2410 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bahri M., Hitzer E., Ashino R., Vaillancourt R.: Windowed Fourier transform of two-dimensional quaternionic signals. Applied Mathematics and Computation 216, 2366–2379 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hahn S.L.: Wigner distributions and ambiguity functions of 2-D quaternionic and monogenic signals. IEEE Trans. Signal Process 53(8), 3111–3128 (2005)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Shapiro M., Tovar L.M.: On a class of integral reprensentations related to the two-dimensional Helmholtz operator. Contemporary Mathematics 212, 229–244 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Applied MathematicsHubei UniversityWuhanChina
  2. 2.Faculty of Mathematics and Computer ScienceHubei UniversityWuhanChina
  3. 3.Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations