Skip to main content

Development of the Method of Quaternion Typification of Clifford Algebra Elements


In this paper we further develop the method of quaternion typification of Clifford algebra elements suggested by the author in the previous papers. On the basis of new classification of Clifford algebra elements, it is possible to reveal and prove a number of new properties of Clifford algebras. We use k-fold commutators and anticommutators. In this paper we consider Clifford and exterior degrees and elementary functions of Clifford algebra elements.

This is a preview of subscription content, access via your institution.


  1. P. Lounesto, Clifford Algebras and Spinors, Cambridge Univ. Press (1997, 2001).

  2. D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus – A Unified Language for Mathematical Physics, Reidel Publishing Company (1984).

  3. Marchuk N. G., Shirokov D. S.: Unitary spaces on Clifford algebras. Adv. Appl. Clifford Algebras 18(2), 237–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Shirokov D. S.: Classification of elements of Clifford algebras according to quaternionic types. Dokl. Math 80, 1 (2009)

    Article  MathSciNet  Google Scholar 

  5. D. S. Shirokov, A classification of Lie algebras of pseudounitary groups in the techniques of Clifford algebras, Adv. Appl. Clifford Algebras, 20 (2) (2010), pp. 411-425.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. S. Shirokov, Quaternion typification of Clifford algebra elements, Adv. Appl. Clifford Algebras, Online First, DOI:10.1007/s00006-011-0288-2, (2011).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. S. Shirokov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shirokov, D.S. Development of the Method of Quaternion Typification of Clifford Algebra Elements. Adv. Appl. Clifford Algebras 22, 483–497 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Clifford algebra
  • quaternion type
  • commutator
  • anticommutator
  • k-fold commutator