Skip to main content
Log in

On Conformal Infinity and Compactifications of the Minkowski Space

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Using the standard Cayley transform and elementary tools it is reiterated that the conformal compactification of the Minkowski space involves not only the “cone at infinity” but also the 2-sphere that is at the base of this cone. We represent this 2-sphere by two additionally marked points on the Penrose diagram for the compactified Minkowski space. Lacks and omissions in the existing literature are described, Penrose diagrams are derived for both, simple compactification and its double covering space, which is discussed in some detail using both the U(2) approach and the exterior and Clifford algebra methods. Using the Hodge \({\star}\) operator twistors (i.e. vectors of the pseudo-Hermitian space H 2,2) are realized as spinors (i.e., vectors of a faithful irreducible representation of the even Clifford algebra) for the conformal group SO(4, 2)/Z 2. Killing vector fields corresponding to the left action of U(2) on itself are explicitly calculated. Isotropic cones and corresponding projective quadrics in H p,q are also discussed. Applications to flat conformal structures, including the normal Cartan connection and conformal development has been discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armin Uhlmann, The Closure of Minkowski Space. Acta Physica Polonica, Vol. XXIV, Fasc. 2(8) (1963), pp. 295–296.

  2. R. Penrose and W. Rindler, Spinors and Space-Time, Vol. 2 – Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge, England, 1984.

  3. S. A. Huggett and K. P. Tod, An Introduction to Twistor Theory. Cambridge University Press (1994).

  4. Beem John K., Ehrlich Paul E., Easley Kevin L.: Global Lorentzian Geometry, Second Edition. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  5. Flores José L.: The Causal Boundary of Spacetimes Revisited. Commun. Math. Phys. 276, 611–643 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Lerner David E.: Global Properties of Massless Free Fields. Commun. Math. Phys. 55, 179–182 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Claude Chevalley, Theory of Lie Groups I. Princeton Mathematical Series, no. 8, Princeton University Press, (1946), Chapter I, §X, Proposition 6.

  8. A. V. Levichev, Parallelizations of Chronometric Bundles Based on the Sub-group U(2). Izvestia RAEN, ser.MMMIU, 10 (2006), n.1-2, pp. 51–61, (in Russian).

  9. W. Kopczyński and L. S. Woronowicz, A geometrical approach to the twistor formalism. Rep. Math. Phys. Vol 2 (1971), pp. 35–51.

  10. Stolarczyk Leszek Z.: The Hodge Operator in Fermionic Fock Space. Collect. Czech. Chem. Commun. 70, 979–1016 (2005)

    Article  Google Scholar 

  11. René Deheuvels, Formes quadratiques et groupes classiques. Presse Universitaires de France, Paris (1981).

  12. Aubert Daigneault, Irving Segal’s axiomatization of spacetime and its cosmological consequences. Preprint http://arxiv.org/abs/gr-qc/0512059.

  13. Schmidt B.G.: A New Definition of Conformal and Projective Infinity of Space-Times. Commun. math. Phys. 36, 73–90 (1974)

    Article  ADS  MATH  Google Scholar 

  14. Akivis Maks A., Goldberg Vladislav V.: Conformal Differential Geometry and its Generalizations. A Wiley Interscience Publications, New York (1996)

    Book  MATH  Google Scholar 

  15. N. M. Todorov, I. T. Todorov, Conformal Quantum Field Theory in Two and Four Dimensions. Vienna, Preprint ESI 1155 (2002), http://www.esi.ac.at/preprints/esi1155.ps.

  16. Nikolay M. Nikolov, Rationality of Conformally Invariant Local Correlation Functions on Compactified Minkowski Space. Commun. Math. Phys. 218 (2001), pp. 417–436.

  17. Nikolov Nikolay M.: Vertex Algebras in Higher Dimensions and Globally Conformal Invariant Quantum Field Theory. Commun. Math. Phys. 253, 283–322 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Roger Penrose, Conformal traetment of Infinity. In “Relativity, groups and topology”, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, ed. DeWitt, Gordon and Brach, New York (1964), pp. 563–584.

  19. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman and Co., New York (1973)

    Google Scholar 

  20. Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  21. Roger Penrose, The Light Cone at Infinity. In Relativistic Theories of Gravitation, ed. L. Infeld, Pergamon Press, Oxford (1964), pp. 369–373.

  22. Rühl W.: Distributions on Minkowski Space and their Connection with Analytic Representations of the Conformal Group. Commun.math. Phys. 27, 53–86 (1972)

    Article  ADS  MATH  Google Scholar 

  23. Pierre Anglès, Conformal Groups in Geometry and Spin Structures. Birkhäuser, Progress in Mathematical Physics, Vol. 50 (2008).

  24. Roger Penrose, Structure of space-time. In Battelle Rencontres, ed. by C. M. DeWitt, J. A. Wheeler, Benjamin, New York (1969), pp. 121–235.

  25. Penrose Roger: Twistor Algebra. J. Math. Phys. 8, 345–366 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Kuiper N.H.: On conformally flat spaces in the large. Ann. of Math. 50, 916–924 (1949)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Penrose R.: Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour. Proc. R. Soc. London 284, 159–203 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Anıl Zenginoğlu, Hyperboloidal foliations and scri-fixing. http://arxiv.org/abs/0712.4333.

  29. Robert Geroch, Asymptotic Structure of Space-Time. In Asymptotic Structure of Space-Time, ed. F. Esposito and L. Witten, Plenum Press (1977), pp. 1–105.

  30. Albert Crumeyrolle, Orthogonal and Symplectic Clifford Algebras. Spinor structures. Kluwer Academic Publishers (1990).

  31. Chisholm M.: Such Silver Currents. The Story of William and Lucy Clifford 1845–1929. The Lutterworth Press, Cambridge (2002)

    Google Scholar 

  32. Penrose Roger: The Road to Reality. Jonathan Cape, London (2004)

    Google Scholar 

  33. Werner Greub, Multilinear Algebra. Springer (1978).

  34. John. C. Baez, Irving E. Segal, Zhengfang Zhou, Introduction to Algebraic and Constructive Quantum Field Theory. Princeton University Press (1992).

  35. Curtis W.D., Miller F.R.: Differential Manifolds and Theoretical Physics. Academic Press, New York (1985)

    MATH  Google Scholar 

  36. Fecko M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  37. Lerner David E.: Twistors and induced representations of SU(2,2). J. Math. Phys. 18, 1812–1817 (1977)

    Article  ADS  MATH  Google Scholar 

  38. Shoshichi Kobayashi, Transformation Groups in Differential Geometry. Springer (1972).

  39. A. Jadczyk, Born’s Reciprocity in the Conformal Domain. In Z. Oziewicz et al (eds.); Spinors, Twistors, Clifford Algebras and Quantum Deformations. Kluwer Academic Publishers (1993), pp. 129–140.

  40. Felipe Leitner, Twistor Spinors and Normal Cartan Connections in Conformal Geometries. ftp://ftp-sfb288.math.tu-berlin.de/pub/Preprints/preprint471.ps.gz.

  41. J. Mickelsson, J. Niederle, Conformally invariant field equations. Ann. de l’I.H.P., section A, tome 23, no 3 (1975), p. 277–295.

  42. Bourbaki Nicolas, Éléments de Mathématique. Algèbre, Chapitre 9. Springer (2007). First edition: Hermann, Paris (1959).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Jadczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jadczyk, A. On Conformal Infinity and Compactifications of the Minkowski Space. Adv. Appl. Clifford Algebras 21, 721–756 (2011). https://doi.org/10.1007/s00006-011-0285-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-011-0285-5

Keywords

Navigation