Skip to main content

Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression

Abstract

Sole nanomaterials or nanomaterials bound to specific biomolecules have been proposed to regulate the immune system. These materials have now emerged as new tools for eliciting immune-based therapies to treat various cancers. Graphene, graphene oxide (GO) and reduced GO (rGO) are the latest nanomaterials among other carbon nanotubes that have attracted wide interest among medical industry players due to their extraordinary properties, inert-state, non-toxic and stable dispersion in a various solvent. Currently, GO and rGO are utilized in various biomedical application including cancer immunotherapy. This review will highlight studies that have been carried out in elucidating the stimulation of GO and rGO on selected innate and adaptive immune cells and their effect on cancer progression to shed some insights for researchers in the development of various GO- and rGO-based immune therapies against various cancers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

reproduced from Silva et al. (2017) with permission from Elsevier

Fig. 3

taken from public domain and original source from National Cancer Institute, USA

Fig. 4

References

  1. Batista F, Harwood N (2009) The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9:15–27. https://doi.org/10.1038/nri2454

    CAS  Article  PubMed  Google Scholar 

  2. Bhunia P, Hwang E, Min M et al (2012) A non-volatile memory device consisting of graphene oxide covalently functionalized with ionic liquid. Chem Commun 48:913–915. https://doi.org/10.1039/c1cc16225j

    CAS  Article  Google Scholar 

  3. Bohlson SS, O’Conner SD, Hulsebus HJ et al (2014) Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol 5:402. https://doi.org/10.3389/fimmu.2014.00402

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2 Suppl 2):S33–S40. https://doi.org/10.1016/j.jaci.2009.09.017

    Article  PubMed  Google Scholar 

  5. Bordoni V, Reina G, Orecchioni M et al (2019) Stimulation of bone formation by monocyte-activator functionalized graphene oxide in vivo. Nanoscale 11:19408–19421. https://doi.org/10.1039/c9nr03975a

    CAS  Article  PubMed  Google Scholar 

  6. Chen GY, Yang HJ, Lu CH et al (2012) Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 33:6559–6569. https://doi.org/10.1016/j.biomaterials.2012.05.064

    CAS  Article  PubMed  Google Scholar 

  7. Chiossone L, Chaix J, Fuseri N et al (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496. https://doi.org/10.1182/blood-2008-10-187179

    CAS  Article  PubMed  Google Scholar 

  8. Choi W, Lahiri I, Seelaboyina R et al (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036

    CAS  Article  Google Scholar 

  9. Dasari Shareena TP, McShan D, Dasmahapatra AK et al (2018) A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett 10:53. https://doi.org/10.1007/s40820-018-0206-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. de Luna LA, de Moraes AC, Consonni SR et al (2016) Comparative in vitro toxicity of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J Nanobiotechnology 14:12. https://doi.org/10.1186/s12951-016-0165-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. de Paula RFO, Rosa IA, Gafanhão IFM et al (2020) Reduced graphene oxide, but not carbon nanotubes, slows murine melanoma after thermal ablation using LED light in B16F10 lineage cells. Nanomedicine 28:102231. https://doi.org/10.1016/j.nano.2020.102231

    CAS  Article  PubMed  Google Scholar 

  12. Deng X, Liang H, Yang W et al (2020) Polarization and function of tumor-associated macrophages mediate graphene oxide-induced photothermal cancer therapy. J Photochem Photobiol B 208:111913. https://doi.org/10.1016/j.jphotobiol.2020.111913

    CAS  Article  PubMed  Google Scholar 

  13. Ding Z, Zhang Z, Ma H et al (2014) In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin. ACS Appl Mater Interfaces 6:19797–19807. https://doi.org/10.1021/am505084s

    CAS  Article  PubMed  Google Scholar 

  14. Feito MJ, Diez-Orejas R, Cicuéndez M et al (2019) Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids Surf B Biointerfaces 176:96–105. https://doi.org/10.1016/j.colsurfb.2018.12.063

    CAS  Article  PubMed  Google Scholar 

  15. Freud AG, Mundy-Bosse BL, Yu J et al (2017) The broad spectrum of human Natural Killer cell diversity. Immunity 47:820–833. https://doi.org/10.1016/j.immuni.2017.10.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    CAS  Article  PubMed  Google Scholar 

  17. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. https://doi.org/10.1038/nri3671

    CAS  Article  PubMed  Google Scholar 

  18. Guo B, Fang L, Zhang B et al (2011) Graphene Doping: a Review Insciences J 1:80–89. https://doi.org/10.5640/insc.010280

    CAS  Article  Google Scholar 

  19. Gurunathan S, Kang MH, Jeyaraj M et al (2019) Differential immunomodulatory effect of graphene oxide and vanillin-functionalized graphene oxide nanoparticles in human acute monocytic leukemia cell line (THP-1). Int J Mol Sci 20:247. https://doi.org/10.3390/ijms20020247

    CAS  Article  PubMed Central  Google Scholar 

  20. Han J, Kim YS, Lim MY et al (2018) Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair. ACS Nano 12:1959–1977. https://doi.org/10.1021/acsnano.7b09107

    CAS  Article  PubMed  Google Scholar 

  21. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    CAS  Article  PubMed  Google Scholar 

  22. Hlongwane P, Mungra N, Madheswaran S et al (2018) Human Granzyme B based targeted cytolytic fusion proteins. Biomedicines 6:72. https://doi.org/10.3390/biomedicines6020072

    CAS  Article  PubMed Central  Google Scholar 

  23. Hodgins JJ, Khan ST, Park MM et al (2019) Killers 2.0: NK cell therapies at the forefront of cancer control. J Clin Invest 129:3499–3510. https://doi.org/10.1172/JCI129338

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang J, Shen F, Huang H et al (2017) Th1high in tumor microenvironment is an indicator of poor prognosis for patients with NSCLC. Oncotarget 8:13116–13125. https://doi.org/10.18632/oncotarget.14471

    Article  PubMed  Google Scholar 

  25. Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130. https://doi.org/10.1158/0008-5472.CAN-11-4094

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175. https://doi.org/10.1038/nri3399

    CAS  Article  PubMed  Google Scholar 

  27. Kurapati R, Russier J, Squillaci MA et al (2015) Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase. Small 11:3985–3994. https://doi.org/10.1002/smll.201500038

    CAS  Article  PubMed  Google Scholar 

  28. Lategan K, Alghadi H, Bayati M et al (2018) Effects of graphene oxide nanoparticles on the immune system biomarkers produced by RAW 2647 and human whole blood cell cultures. Nanomaterials 8:125. https://doi.org/10.3390/nano8020125

    CAS  Article  PubMed Central  Google Scholar 

  29. Lee SW, Park HJ, Van Kaer L et al (2018) Graphene oxide polarizes iNKT cells for production of TGFβ and attenuates inflammation in an iNKT cell-mediated sepsis model. Sci Rep 8:10081. https://doi.org/10.1038/s41598-018-28396-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Li H, Fierens K, Zhang Z et al (2016) Spontaneous protein adsorption on graphene oxide nanosheets allowing efficient intracellular vaccine protein delivery. ACS Appl Mater Interfaces 8:1147–1155. https://doi.org/10.1021/acsami.5b08963

    CAS  Article  PubMed  Google Scholar 

  31. Li R, Guiney LM, Chang CH et al (2018) Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 12:1390–1402. https://doi.org/10.1021/acsnano.7b07737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Loftus C, Saeed M, Davis DM et al (2018) Activation of human Natural Killer cells by graphene oxide-templated antibody nanoclusters. Nano Lett 18:3282–3289. https://doi.org/10.1021/acs.nanolett.8b01089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Long EO, Kim HS, Liu D et al (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258. https://doi.org/10.1146/annurev-immunol-020711-075005

    CAS  Article  PubMed  Google Scholar 

  34. Loutfy SA, Salaheldin TA, Ramadan MA et al (2017) Synthesis, characterization and cytotoxic evaluation of graphene oxide nanosheets: in vitro liver cancer model. Asian Pac J Cancer Prev 18:955–961. https://doi.org/10.22034/APJCP.2017.18.4.955

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lu YJ, Wang YH, Sahu RS et al (2020) Mechanism of nanoformulated graphene oxide-mediated human neutrophil activation. ACS Appl Mater Interfaces 12:40141–40152. https://doi.org/10.1021/acsami.0c12490

    CAS  Article  PubMed  Google Scholar 

  36. Luo Y, Peng J, Huang C, Cao Y (2020) Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. Ecotoxicol Environ Saf 199:110714. https://doi.org/10.1016/j.ecoenv.2020.110714

    CAS  Article  PubMed  Google Scholar 

  37. Ma Y, Shurin GV, Peiyuan Z et al (2013) Dendritic cells in the cancer microenvironment. J Cancer 4:36–44. https://doi.org/10.7150/jca.5046

    CAS  Article  PubMed  Google Scholar 

  38. Ma J, Liu R, Wang X et al (2015) Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 9:10498–10515. https://doi.org/10.1021/acsnano.5b04751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237. https://doi.org/10.1016/j.coi.2010.01.009

    CAS  Article  PubMed  Google Scholar 

  40. Marshall JS, Warrington R, Watson W et al (2018) An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 14(Suppl 2):49. https://doi.org/10.1186/s13223-018-0278-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/P6-13

    Article  PubMed  PubMed Central  Google Scholar 

  42. Meng C, Zhi X, Li C et al (2016) Graphene oxides decorated with Carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano 10:2203–2213. https://doi.org/10.1021/acsnano.5b06750

    CAS  Article  PubMed  Google Scholar 

  43. Mukherjee SP, Bottini M, Fadeel B (2017) Graphene and the immune system: a romance of many dimensions. Front Immunol 8:673. https://doi.org/10.3389/fimmu.2017.00673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Mukherjee SP, Gliga AR, Lazzaretto B et al (2018a) Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. Nanoscale 10:1180–1188. https://doi.org/10.1039/c7nr03552g

    CAS  Article  PubMed  Google Scholar 

  45. Mukherjee SP, Lazzaretto B, Hultenby K et al (2018b) Graphene oxide elicits membrane lipid changes and neutrophil extracellular trap formation. Chem 4:334–358. https://doi.org/10.1016/j.chempr.2017.12.017

    CAS  Article  Google Scholar 

  46. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Naert G, Rivest S (2013) A deficiency in CCR2+ monocytes: the hidden side of Alzheimer’s disease. J Mol Cell Biol 5:284–293. https://doi.org/10.1093/jmcb/mjt028

    CAS  Article  PubMed  Google Scholar 

  48. Narayan R, Kim SO (2015) Surfactant mediated liquid phase exfoliation of graphene. Nano Converg 2:20. https://doi.org/10.1186/s40580-015-0050-x

    CAS  Article  PubMed  Google Scholar 

  49. Newman L, Jasim DA, Prestat E et al (2020) Splenic capture and in vivo intracellular biodegradation of biological-grade graphene oxide sheets. ACS Nano 14:10168–10186. https://doi.org/10.1021/acsnano.0c03438

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Ni G, Wang Y, Wu X et al (2012) Graphene oxide absorbed anti-IL10R antibodies enhance LPS induced immune responses in vitro and in vivo. Immunol Lett 148:126–132. https://doi.org/10.1016/j.imlet.2012.10.001

    CAS  Article  PubMed  Google Scholar 

  51. Ohue Y, Nishikawa H (2019) Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci 110:2080–2089. https://doi.org/10.1111/cas.14069

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Orecchioni M, Bedognetti D, Sgarrella F et al (2014) Impact of carbon nanotubes and graphene on immune cells. J Transl Med 12:138. https://doi.org/10.1186/1479-5876-12-138

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Orecchioni M, Jasim DA, Pescatori M et al (2016a) Molecular and genomic impact of large and small lateral dimension graphene oxide sheets on human immune cells from healthy donors. Adv Healthc Mater 5:276–287. https://doi.org/10.1002/adhm.201500606

    CAS  Article  PubMed  Google Scholar 

  54. Orecchioni M, Memard-Moyon C, Delogu LG et al (2016b) Graphene and the immune system: challenges and potentiality. Adv Drug Deliv Rev 105(Pt B):163–175. https://doi.org/10.1016/j.addr.2016.05.014

    CAS  Article  PubMed  Google Scholar 

  55. Orecchioni M, Bordoni V, Fuoco C et al (2020) Toward high-dimensional single-cell analysis of graphene oxide biological impact: tracking on immune cells by single-cell mass cytometry. Small 16:2000123. https://doi.org/10.1002/smll.202000123

    CAS  Article  Google Scholar 

  56. Park CS, Choi KS, Park IW et al (2015) Autophagy in RAW264.7 cells treated with surface-functionalized graphene oxides. J Nanomaterials. https://doi.org/10.1155/2015/704789

    Article  Google Scholar 

  57. Paul S, Lal G (2017) The molecular mechanism of Natural Killer cells function and its importance in cancer immunotherapy. Front Immunol 8:1124. https://doi.org/10.3389/fimmu.2017.01124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550. https://doi.org/10.1038/nri1841

    CAS  Article  PubMed  Google Scholar 

  59. Podolska MJ, Barras A, Alexiou C et al (2020) Graphene oxide nanosheets for localized hyperthermia-physicochemical characterization, biocompatibility, and induction of tumor cell death. Cells 9:776. https://doi.org/10.3390/cells9030776

    CAS  Article  PubMed Central  Google Scholar 

  60. Priyadarsini S, Mohanty S, Mukherjee S et al (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem 8:123–137. https://doi.org/10.1007/s40097-018-0265-6

    CAS  Article  Google Scholar 

  61. Pulendran B, Tang H, Denning TL (2008) Division of labor, plasticity, and crosstalk between dendritic cell subsets. Curr Opin Immunol 20:61–67. https://doi.org/10.1016/j.coi.2007.10.009

    CAS  Article  PubMed  Google Scholar 

  62. Qin Y, Oh S, Lim S et al (2019) Invariant NKT cells facilitate cytotoxic T-cell activation via direct recognition of CD1d on T cells. Exp Mol Med 51:1–9. https://doi.org/10.1038/s12276-019-0329-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Qu G, Liu S, Zhang S et al (2013) Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano 7:5732–5745. https://doi.org/10.1021/nn402330b

    CAS  Article  PubMed  Google Scholar 

  64. Reina G, Gonza´lez-Dominguez JM, Criado A et al (2017) Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev 46:4400–4416. https://doi.org/10.1039/c7cs00363c

    CAS  Article  PubMed  Google Scholar 

  65. Rossjohn J, Pellicci DG, Patel O et al (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12:845–857. https://doi.org/10.1038/nri3328

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Russier J, Treossi E, Scarsi A et al (2013) Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale 5:11234–11247. https://doi.org/10.1039/c3nr03543c

    CAS  Article  PubMed  Google Scholar 

  67. Saleem J, Wang L, Chen C (2017) Immunological effects of graphene family nanomaterials. NanoImpact 5:109–118. https://doi.org/10.1016/j.impact.2017.01.005

    Article  Google Scholar 

  68. Salvatore V, Teti G, Focaroli S et al (2017) The tumor microenvironment promotes cancer progression and cell migration. Oncotarget 8:9608–9616. https://doi.org/10.18632/oncotarget.14155

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sasidharan A, Panchakarla LS, Sadanandan AR et al (2012) Hemocompatibility and macrophage response of pristine and functionalized graphene. Small 8:1251–1263. https://doi.org/10.1002/smll.201102393

    CAS  Article  PubMed  Google Scholar 

  70. Scapini P, Lapinet-Vera JA, Gasperini S et al (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203. https://doi.org/10.1034/j.1600-065x.2000.17706.x

    CAS  Article  PubMed  Google Scholar 

  71. Serrano MC, Feito MJ, González-Mayorga A et al (2018) Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. Biomater Sci 6:2987–2997. https://doi.org/10.1039/c8bm00902c

    CAS  Article  PubMed  Google Scholar 

  72. Sharma H, Mondal S (2020) Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int J Mol Sci 21:6280. https://doi.org/10.3390/ijms21176280

    CAS  Article  PubMed Central  Google Scholar 

  73. Shim G, Kim MG, Park JY et al (2016) Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv Drug Deliv Rev 105(Pt B):205–227. https://doi.org/10.1016/j.addr.2016.04.004

    CAS  Article  PubMed  Google Scholar 

  74. Silva AL, Peres C, Conniot J et al (2017) Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Semin Immunol 34:3–24. https://doi.org/10.1016/j.smim.2017.09.003

    CAS  Article  PubMed  Google Scholar 

  75. Sinha A, Cha BG, Choi Y et al (2017) Carbohydrate-functionalized rGO as an effective cancer vaccine for stimulating antigen-specific cytotoxic T cells and inhibiting tumor growth. Chem Mater 29:6883–6892. https://doi.org/10.1021/acs.chemmater.7b02197

    CAS  Article  Google Scholar 

  76. Srimaneepong V, Rokaya D, Thunyakitpisal P et al (2020) Corrosion resistance of graphene oxide/silver coatings on Ni–Ti alloy and expression of IL-6 and IL-8 in human oral fibroblasts. Sci Rep 10:3247. https://doi.org/10.1038/s41598-020-60070-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Srivastava MK, Sinha P, Clements VK et al (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70:68–77. https://doi.org/10.1158/0008-5472.CAN-09-2587

    CAS  Article  PubMed  Google Scholar 

  78. Sydlik SA, Jhunjhunwala S, Webber MJ et al (2015) In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano 9:3866–3874. https://doi.org/10.1021/acsnano.5b01290

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Tabish TA, Pranjol MZI, Jabeen F et al (2018) Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl Mat Today 12:389–401. https://doi.org/10.1016/j.apmt.2018.07.005

    Article  Google Scholar 

  80. Tkach AV, Shurin GV, Shurin MR et al (2011) Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5:5755–5762. https://doi.org/10.1021/nn2014479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Tobin RP, Jordan KR, Kapoor P et al (2019) IL-6 and IL-8 are linked with Myeloid-Derived Suppressor Cell accumulation and correlate with poor clinical outcomes in melanoma patients. Front Oncol 9:1223. https://doi.org/10.3389/fonc.2019.01223

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tran Janco JM, Lamichhane P, Karyampudi L et al (2015) Tumor-infiltrating dendritic cells in cancer pathogenesis. J Immunol 194:2985–2991. https://doi.org/10.4049/jimmunol.1403134

    CAS  Article  PubMed  Google Scholar 

  83. Turvey SE, Broide DH (2010) Innate immunity. J Allergy Clin Immunol 125(2 Suppl 2):S24-32. https://doi.org/10.1016/j.jaci.2009.07.016

    Article  PubMed  Google Scholar 

  84. Uribe-Querol E, Rosales C (2015) Neutrophils in cancer: two sides of the same coin. J Immunol Res 2015:983698. https://doi.org/10.1155/2015/983698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Vivier E, Tomasello E, Baratin M et al (2008) Functions of natural killer cells. Nat Immunol 9:503–510. https://doi.org/10.1038/ni1582

    CAS  Article  PubMed  Google Scholar 

  86. Wang W, Li Z, Duan J et al (2014) In vitro enhancement of dendritic cell-mediated anti-glioma immune response by graphene oxide. Nanoscale Res Lett 9:311. https://doi.org/10.1186/1556-276X-9-311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Wang M, Zhao J, Zhang L et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773. https://doi.org/10.7150/jca.17648

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Wang X, Cao F, Yan M et al (2019) Alum-functionalized graphene oxide nanocomplexes for effective anticancer vaccination. Acta Biomater 83:390–399. https://doi.org/10.1016/j.actbio.2018.11.023

    CAS  Article  PubMed  Google Scholar 

  89. Wibroe PP, Petersen SV, Bovet N et al (2016) Soluble and immobilized graphene oxide activates complement system differently dependent on surface oxidation state. Biomaterials 78:20–26. https://doi.org/10.1016/j.biomaterials.2015.11.028

    CAS  Article  PubMed  Google Scholar 

  90. Wu Y, Wang F, Wang S et al (2018) Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale 10:14637–14650. https://doi.org/10.1039/C8NR02798F

    CAS  Article  PubMed  Google Scholar 

  91. Xu S, Xu S, Chen S et al (2016) Graphene oxide modulates B cell surface phenotype and impairs immunoglobulin secretion in plasma cell. J Nanosci Nanotechnol 16:4205–4215. https://doi.org/10.1166/jnn.2016.11712

    CAS  Article  PubMed  Google Scholar 

  92. Xu C, Hong H, Lee Y et al (2020) Efficient lymph node-targeted delivery of personalized cancer vaccines with reactive oxygen species-inducing reduced graphene oxide nanosheets. ACS Nano 14:13268–13278. https://doi.org/10.1021/acsnano.0c05062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Yan J, Chen L, Huang CC et al (2017) Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes. Colloids Surf B Biointerfaces 153:300–309. https://doi.org/10.1016/j.colsurfb.2017.02.036

    CAS  Article  PubMed  Google Scholar 

  94. Yang Z, Pan Y, Chen T et al (2020) Cytotoxicity and immune dysfunction of dendritic cells Caused by graphene oxide. Front Pharmacol 11:1206. https://doi.org/10.3389/fphar.2020.01206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Yu W, Sisi L, Haiyan Y et al (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10:15328. https://doi.org/10.1039/D0RA01068E

    CAS  Article  Google Scholar 

  96. Zamorina SA, Shardina KY, Timganova VP et al (2020) Effect of graphene oxide nanoparticles on differentiation of myeloid suppressor cells. Bull Exp Biol Med 170:84–87. https://doi.org/10.1007/s10517-020-05009-y

    CAS  Article  PubMed  Google Scholar 

  97. Zhi X, Fang H, Bao C et al (2013) The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials 34:5254–5261. https://doi.org/10.1016/j.biomaterials.2013.03.024

    CAS  Article  PubMed  Google Scholar 

  98. Zhou H, Zhao K, Li W et al (2012) The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways. Biomaterials 33:6933–6942. https://doi.org/10.1016/j.biomaterials.2012.06.064

    CAS  Article  PubMed  Google Scholar 

  99. Zhou F, Wang M, Luo T et al (2021) Photo-activated chemo-immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials 265:120421. https://doi.org/10.1016/j.biomaterials.2020.120421

    CAS  Article  PubMed  Google Scholar 

  100. Zingoni A, Vulpis E, Nardone I et al (2016) Targeting NKG2D and NKp30 ligands shedding to improve NK cell-based immunotherapy. Crit Rev Immunol 36:445–460. https://doi.org/10.1615/CritRevImmunol.2017020166

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported from research university individual grant from Universiti Sains Malaysia (1001/CIPPT/8012205).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafeezul Mohamed.

Ethics declarations

Conflict of Interest

The authors declared no conflict interest in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yunus, M.A., Ramli, M.M., Osman, N.H. et al. Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Arch. Immunol. Ther. Exp. 69, 20 (2021). https://doi.org/10.1007/s00005-021-00625-6

Download citation

Keywords

  • Graphene oxide
  • Reduced graphene oxide
  • Innate immune cells
  • Adaptive immune cells
  • Cancers