Skip to main content

Advertisement

Log in

Immune Checkpoint Blockade in Cancer Immunotherapy: Mechanisms, Clinical Outcomes, and Safety Profiles of PD-1/PD-L1 Inhibitors

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Programmed cell death protein 1 (PD-1) and its ligand PD-L1 are critical for the regulation of T cell exhaustion and activity suppression. Tumor cells expressing immune checkpoints including PD-L1 escape monitoring of T cells from the host immune system. Checkpoint inhibitors are highly promising therapies that function as tumor-suppressing factors via modulation of tumor cell–immune cell interactions as well as boosting T cell-mediated anti-tumor immunity. Notably, PD-1 or PD-L1 monoclonal antibody (mAb) has demonstrated promising therapeutic effects in clinical studies of many types of cancer. These mAbs have caused significant tumor regression with impressive anti-tumor response rates as well as a favorable safety profile in cancer patients. Furthermore, the combination of PD-1/PD-L1 mAbs with other types of anti-tumor agents has also developed to boost the anti-tumor responses and enhance therapeutic effects in cancer patients. This review clarifies the mechanisms of PD-1/PD-L1-mediated anti-cancer immune responses and some clinical studies of mAbs targeting PD-1/PD-L1. The challenges and future of PD-1/PD-L1 blockade therapy are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All of the data analyzed in this study were included in the final published article.

Abbreviations

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death ligand 1

mAbs:

Monoclonal antibodies

Tregs:

Regulatory T cells

APCs:

Antigen-presenting cells

CTLA-4:

Cytotoxic T-lymphocyte protein 4

NSCLC:

Non-small cell lung cancer

IFN-γ:

Interferon-γ

TNF-α:

Tumor necrosis factor-α

IL-2:

Interleukin-2

DC:

Dendritic cells

NK:

Natural killer

SHP-2:

Src homology 2

PI3K:

Phosphatidylinositol 3-kinase

MHC:

Major histocompatibility complex

CRC:

Colorectal cancer

CRPC:

Castrate-resistant prostate cancer

RCC:

Renal cell cancer

ORR:

Objective response rate

BRAF:

Proto-oncogene B-Raf

References

  • Abou-Alfa GK, Qin S, Ryoo BY et al (2018) Phase III randomized study of second line ADI-PEG 20 plus best supportive care versus placebo plus best supportive care in patients with advanced hepatocellular carcinoma. Ann Oncol 29:1402–1408

    CAS  PubMed  Google Scholar 

  • Alsaab HO, Sau S, Alzhrani R et al (2017) PD-1 and PD-L1 Checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    PubMed  PubMed Central  Google Scholar 

  • Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319

    PubMed  Google Scholar 

  • Antonia SJ, Brahmer JR, Gettinger S et al (2014) Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) in advanced non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 90:S2

    Google Scholar 

  • Armand P, Nagler A, Weller EA et al (2013) Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 31:4199–4206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Armand P, Shipp MA, Ribrag V et al (2016) Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 34:3733–3739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkins MB, Kudchadkar RR, Sznol M et al (2014) Phase 2, multicenter, safety and efficacy study of pidilizumab in patients with metastatic melanoma. J Clin Oncol 32:9001

    Google Scholar 

  • Azuma T, Yao S, Zhu G et al (2008) B7–H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635–3643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balar AV, Galsky MD, Rosenberg JE et al (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389:67–76

    CAS  PubMed  Google Scholar 

  • Barber DL, Wherry EJ, Masopust D et al (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687

    CAS  PubMed  Google Scholar 

  • Berger R, Rotem-Yehudar R, Slama G et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14:3044–3051

    CAS  PubMed  Google Scholar 

  • Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    CAS  PubMed  Google Scholar 

  • Blackburn SD, Shin H, Haining WN et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10:29–37

    CAS  PubMed  Google Scholar 

  • Blank C, Brown I, Peterson AC et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    CAS  PubMed  Google Scholar 

  • Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyerinas B, Jochems C, Fantini M et al (2015) Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 3:1148–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer JR, Rizvi NA, Lutzky J et al (2014) Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. J Clin Oncol 32:8021

    Google Scholar 

  • Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butte MJ, Keir ME, Phamduy TB et al (2007) Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chemnitz JM, Parry RV, Nichols KE et al (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954

    CAS  PubMed  Google Scholar 

  • Chen L (2004) Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol 4:336–347

    CAS  PubMed  Google Scholar 

  • Chen Y, Liu P, Gao F et al (2010) A dimeric structure of PD-L1: functional units or evolutionary relics? Protein Cell 1:153–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Zinzani PL, Fanale MA et al (2017) Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 35:2125–2132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Veverka V, Radhakrishnan A et al (2013) Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem 288:11771–11785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen EE, Machiels JPH, Harrington KJ et al (2015) KEYNOTE-040: a phase III randomized trial of pembrolizumab (MK-3475) versus standard treatment in patients with recurrent or metastatic head and neck cancer. J Clin Oncol 33:TPS6084

    Google Scholar 

  • Day CL, Kaufmann DE, Kiepiela P et al (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354

    CAS  PubMed  Google Scholar 

  • Dirix LY, Takacs I, Jerusalem G et al (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167:671–686

    CAS  PubMed  Google Scholar 

  • Dong H, Zhu G, Tamada K et al (1999) B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    CAS  PubMed  Google Scholar 

  • Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    CAS  PubMed  Google Scholar 

  • Dong H, Strome SE, Matteson EL et al (2003) Costimulating aberrant T cell responses by B7–H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468

    CAS  PubMed  Google Scholar 

  • Duffy AG, Makarova-Rusher OV, Pratt D et al (2016) A pilot study of AMP-224, a PD-L2 Fc fusion protein, in combination with stereotactic body radiation therapy (SBRT) in patients with metastatic colorectal cancer. J Clin Oncol 34:560

    Google Scholar 

  • Fernandes M, Brabek J (2017) Cancer, checkpoint inhibitors, and confusion. Lancet Oncol 18:e632

    PubMed  Google Scholar 

  • Francisco LM, Salinas VH, Brown KE et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fried I, Lossos A, BenAmi T et al (2016) HG-02A phase 1/2 trial of the antibody pidilizumab (MDV9300) in pediatric diffuse intrinsic pontine glioma. Neuro-Oncology 18(Suppl 3):iii48

    PubMed Central  Google Scholar 

  • Fried I, Lossos A, Ben Ami T et al (2018) Preliminary results of immune modulating antibody MDV9300 (pidilizumab) treatment in children with diffuse intrinsic pontine glioma. J Neurooncol 136:189–195

    CAS  PubMed  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamanishi J, Mandai M, Ikeda T et al (2015) Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol 33:4015–4022

    CAS  PubMed  Google Scholar 

  • Hamid O, Robert C, Daud C et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 205:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst RS, Gordon MS, Fine GD et al (2013) A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. J Clin Oncol 31:3000

    Google Scholar 

  • Herbst RS, Soria JC, Kowanetz M et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano F, Kaneko K, Tamura H et al (2005) Blockade of B7–H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 65:1089–1096

    CAS  PubMed  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmeyer KA, Jeon H, Zang X (2011) The PD-1/PD-L1 (B7–H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion. J Biomed Biotechnol 2011:451694

    PubMed  PubMed Central  Google Scholar 

  • Infante JR, Goel S, Tavakkoli F et al (2015) A phase I, multicenter, open-label, first-in-human study to evaluate MEDI0680, an anti-programmed cell death-1 antibody, in patients with advanced malignancies. J Clin Onclol 33:TPS3088

    Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99:12293–12297

    CAS  PubMed  PubMed Central  Google Scholar 

  • John LB, Devaud C, Duong CP et al (2013) Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19:5636–5646

    CAS  PubMed  Google Scholar 

  • Ka C, Oestreich KJ, Paley MA et al (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12:663–671

    Google Scholar 

  • Kaufman HL, Russell J, Hamid O et al (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17:1374–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keir ME, Liang SC, Guleria I et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    CAS  PubMed  Google Scholar 

  • Kim ES (2017) Avelumab: first global approval. Drugs 77:929–937

    PubMed  Google Scholar 

  • Konstantinidou M, Zarganes-Tzitzikas T, Doemling A (2018) Immune checkpoint PD-1/PD-L1: is there life beyond antibodies? Angew Chem Int Ed Engl 57:4840–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogsgaard M, Davis MM (2005) How T cells “see” antigen. Nat Immunol 6:239–245

    CAS  PubMed  Google Scholar 

  • Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    CAS  PubMed  Google Scholar 

  • Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015a) Combined Nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    PubMed  PubMed Central  Google Scholar 

  • Larkin J, Hodi FS, Wolchok JD (2015b) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:1270–1271

    PubMed  Google Scholar 

  • Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    CAS  PubMed  Google Scholar 

  • Lázár-Molnár E, Scandiuzzi L, Basu I et al (2017) Structure-guided development of a high-affinity human programmed cell death-1: Implications for tumor immunotherapy. EBioMedicine 17:30–44

    PubMed  PubMed Central  Google Scholar 

  • Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    CAS  PubMed  Google Scholar 

  • Li Y, Li F, Jiang F et al (2016) A mini-review for cancer immunotherapy: molecular understanding of PD-1/PD-L1 pathway & & translational blockade of immune checkpoints. Int J Mol Sci 17:1151

    PubMed Central  Google Scholar 

  • Lieu C, Bendell J, Powderly J et al (2014) 1049Osafety and efficacy of mpdl3280a (anti-pdl1) in combination with bevacizumaB (BEV) and/or chemotherapy (CHEMO) in patients (PTS) with locally advanced or metastatic solid tumors. Ann Oncol 25(suppl 4):iv361

    Google Scholar 

  • Lin DY, Tanaka Y, Iwasaki M et al (2008) The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA 105:3011–3016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Taylor M, Boni V et al (2018) Phase I/II study of spartalizumab (PDR001), an anti-PD1 mAb, in patients with advanced melanoma or non-small cell lung cancer. Oncology PRO 29:400–441

    Google Scholar 

  • Lipson EJ, Sharfman WH, Drake CG et al (2013) Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res 19:462–468

    CAS  PubMed  Google Scholar 

  • LoRusso PM, Powderly J, Burris HA et al (2013) AACR Abstract LB-193: Phase I study of safety, tolerability, pharmacokinetics, and pharmacodynamics of AMP-224 (B7-DC Fc fusion protein) in a regimen containing cyclophosphamide (CTX) in patients with advanced solid tumors. Cancer Res 73(8 Suppl):LB-193

    Google Scholar 

  • Lu P, Youngblood BA, Austin JW et al (2014) Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med 211:515–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A (2010) The growing diversity and spectrum of action of myeloid-derived suppressor cells. Eur J Immunol 40:3317–3320

    CAS  PubMed  Google Scholar 

  • Massard C, Gordon MS, Sharma S et al (2016) Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 34:3119–3125

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott DF, Drake CG, Sznol M et al (2015) Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol 33:2013–2020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motzer RJ, Escudier B, McDermott DF et al (2015a) Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med 373:1803–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motzer RJ, Rini BI, McDermott DF et al (2015b) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33:1430–1437

    CAS  PubMed  Google Scholar 

  • Naing A, Gelderblom H, Gainor JF et al (2016a) A first-in-human phase I study of the anti-PD-1 antibody PDR001 in patients with advanced solid tumors. J Clin Oncol 34:3060

    Google Scholar 

  • Naing A, Goel S, Curti B et al (2016b) A Phase 1 first-in-human study of MEDI0680, an anti-PD-1 monoclonal antibody (mAb) in adult patients (pts) with advanced tumors. Ann Oncol 27:367

    Google Scholar 

  • Naing A, Infante J, Goel S et al (2019) Anti-PD-1 monoclonal antibody MEDI0680 in a phase I study of patients with advanced solid malignancies. J Immunother Cancer 7:225

    PubMed  PubMed Central  Google Scholar 

  • Nishimura H, Nose M, Hiai H et al (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    CAS  PubMed  Google Scholar 

  • Nurieva R, Thomas S, Nguyen T et al (2006) T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25:2623–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ocana-Guzman R, Torre-Bouscoulet L, Sada-Ovalle I (2016) TIM-3 regulates distinct functions in macrophages. Front Immunol 7:229

    PubMed  PubMed Central  Google Scholar 

  • Park JJ, Omiya R, Matsumura Y et al (2010) B7–H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116:1291–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parry RV, Chemnitz JM, Frauwirth KA et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik A, Kang SP, Rasco D et al (2015) Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res 21:4286–4293

    CAS  PubMed  Google Scholar 

  • Patsoukis N, Brown J, Petkova V et al (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46

    PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Bardhan K, Chatterjee P et al (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692

    CAS  PubMed  Google Scholar 

  • Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017

    PubMed  PubMed Central  Google Scholar 

  • Powles T, Eder JP, Fine GD et al (2014a) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562

    CAS  PubMed  Google Scholar 

  • Powles T, Vogelzang NJ, Fine GD et al (2014b) Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). J Clin Oncol 32:5011

    Google Scholar 

  • Quigley M, Pereyra F, Nilsson B et al (2010) Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med 16:1147–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao A, Patel MR (2019) A review of avelumab in locally advanced and metastatic bladder cancer. Ther Adv Urol 11:1756287218823485

    PubMed  PubMed Central  Google Scholar 

  • Rexer H (2015) Therapy of untreated local advanced or metastatic renal cell carcinoma. Phase III, randomized, open-label study of nivolumab combined with ipilimumab versus sunitinib monotherapy in subjects with previously untreated, local advanced or metastatic renal cell carcinoma (CheckMate 214 - AN 36/15 of the AUO). Urologe A 54:1443–1445

    CAS  PubMed  Google Scholar 

  • Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384:1109–1117

    CAS  PubMed  Google Scholar 

  • Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    CAS  PubMed  Google Scholar 

  • Schachter J, Ribas A, Long GV et al (2017) Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet 390:1853–1862

    CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard KA, Fitz LJ, Lee JM et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41

    CAS  PubMed  Google Scholar 

  • Sledzinska A, Menger L, Bergerhoff K et al (2015) Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 9:1936–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staron MM, Gray SM, Marshall HD et al (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41:802–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syn NL, Teng MWL, Mok TSK et al (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18:e731–e741

    PubMed  Google Scholar 

  • Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7–h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127137

    Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Viricel C, Ahmed M, Barakat K (2015) Human pd-1 binds differently to its human ligands: a comprehensive modeling study. J Mol Graphics Modelling 57:131–142

    CAS  Google Scholar 

  • Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–1086

    PubMed  Google Scholar 

  • Westin JR, Chu F, Zhang M et al (2014) Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol 15:69–77

    CAS  PubMed  Google Scholar 

  • Wirth LJ, Eigendorff E, Capdevila J et al (2018) Phase I/II study of spartalizumab (PDR001), an anti-PD1 mAb, in patients with anaplastic thyroid cancer. J Clin Oncol 36:6024

    Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong RM, Scotland RR, Lau RL et al (2007) Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs. Int Immunol 19:1223–1234

    CAS  PubMed  Google Scholar 

  • Xia Y, Medeiros LJ, Young KH (2016) Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta 1865:58–71

    CAS  PubMed  Google Scholar 

  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W et al (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youngblood B, Oestreich KJ, Ha SJ et al (2011) Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35:400–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zak KM, Kitel R, Przetocka S et al (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23:2341–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zang X, Allison JP (2007) The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res 13(18 Pt 1):5271–5279

    CAS  PubMed  Google Scholar 

  • Zarour HM (2016) Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res 22:1856–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Schwartz JCD, Guo X et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20:337–347

    CAS  PubMed  Google Scholar 

  • Zhang F, Wei H, Wang X et al (2017) Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discov 3:17004

    PubMed  PubMed Central  Google Scholar 

  • Zinzani PL, Ribrag V, Moskowitz CH et al (2017) Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood 130:267–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv324

    Google Scholar 

Download references

Funding

This work was supported by the Social Development of Science and Technology Bureau of Zhangjiagang City (Grant No. ZKS1734) and Project of Diagnosis and Treatment Technology for Key Clinical Diseases of Suzhou (Grant No. LCZX201617).

Author information

Authors and Affiliations

Authors

Contributions

YY, LZ, YZ, and HQ wrote the manuscript. CL contributed to the English assessment and manuscript revision. All of the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Zhang or Chang Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Zhang, L., Zuo, Y. et al. Immune Checkpoint Blockade in Cancer Immunotherapy: Mechanisms, Clinical Outcomes, and Safety Profiles of PD-1/PD-L1 Inhibitors. Arch. Immunol. Ther. Exp. 68, 36 (2020). https://doi.org/10.1007/s00005-020-00601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-020-00601-6

Keywords

Navigation