Skip to main content

WNT7A Expression is Downregulated in T Lymphocytes after T-Cell Receptor Activation Due to Histone Modifications and in T-ALL by DNA Methylation

Abstract

WNT signaling pathway regulates several processes involved in the homeostasis of normal cells. Its dysregulation is associated with pathological outcomes like cancer. We previously demonstrated that downregulation of WNT7A correlates with higher proliferation rates in acute lymphoblastic leukemia. However, the regulation of this gene in pathological and normal conditions remains unexplored. In this work, we aimed to analyze the transcriptional regulation of WNT7A in leukemic cells and in normal T lymphocytes after a proliferative stimulus. WNT7A expression was measured in blood cells and in T lymphocytes after phytohemagglutinin-L (PHA-L) treatment or T-cell receptor (TCR) activation by qPCR and Western blot. Promoter methylation was assessed using methylation-sensitive restriction enzymes, and histone modifications were determined by chromatin immunoprecipitation and qPCR. In T-cell acute lymphoblastic leukemia (T-ALL), WNT7A expression is silenced through DNA methylation of CpG island in the promoter region. In normal peripheral blood cells, WNT7A is mainly expressed by monocytes and T lymphocytes. TCR activation induces the downregulation of WNT7A in normal T lymphocytes by changes in histone methylation marks (H3K4me2/3) and histone deacetylases. A proliferative stimulus mediated by IL-2 keeps WNT7A expression at low levels but in the absence of IL-2, the expression of this gene tends to be restored. Furthermore, after TCR activation and WNT7A downregulation, target genes associated with the WNT canonical pathway were upregulated indicating an independent activity of WNT7A from the WNT canonical pathway. WNT7A expression is silenced by long-term DNA methylation in T-ALL-derived cells and downregulated by histone modifications after TCR activation in normal T lymphocytes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmadzadeh A, Norozi F, Shahrabi S et al (2016) Wnt/beta-catenin signaling in bone marrow niche. Cell Tissue Res 363:321–335

    CAS  PubMed  Article  Google Scholar 

  2. Bigas A, Guiu J, Gama-Norton L (2013) Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells Mol Dis 51:264–270

    CAS  PubMed  Article  Google Scholar 

  3. Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13:257–269

    CAS  PubMed  Article  Google Scholar 

  4. Hirata T, Zheng Q, Chen Z et al (2015) Wnt7A is a putative prognostic and chemosensitivity marker in human malignant pleural mesothelioma. Oncol Rep 33:2052–2060

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Huang CC, Orvis GD, Kwan KM et al (2014) Lhx1 is required in Mullerian duct epithelium for uterine development. Dev Biol 389:124–136

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Huang X, Zhu H, Gao Z et al (2018) Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p. J Biol Chem 293:6693–6706

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Jia B, Qiu X, Chu H et al (2019) Wnt7a predicts poor prognosis, and contributes to growth and metastasis in tongue squamous cell carcinoma. Oncol Rep 41:1749–1758

    CAS  PubMed  Google Scholar 

  8. Kim TH, Moon JY, Kim SH et al (2015) Clinical significance of aberrant Wnt7a promoter methylation in human non-small cell lung cancer in Koreans. J Korean Med Sci 30:155–161

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Kondratov AG, Kvasha SM, Stoliar LA et al (2012) Alterations of the WNT7A gene in clear cell renal cell carcinomas. PLoS ONE 7:e47012

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Kuznetsova AV, Kurinov AM, Chentsova EV et al (2015) Effect of hrWnt7a on human retinal pigment epithelial cells in vitro. Bull Exp Biol Med 159:534–540

    CAS  PubMed  Article  Google Scholar 

  11. LaMere SA, Thompson RC, Komori HK et al (2016) Promoter H3K4 methylation dynamically reinforces activation-induced pathways in human CD4 T cells. Genes Immun 17:283–297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Le Grand F, Jones AE, Seale V et al (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Lovatt M, Bijlmakers MJ (2010) Stabilisation of beta-catenin downstream of T cell receptor signalling. PLoS ONE 5:e12794

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Luckey MA, Kimura MY, Waickman AT et al (2014) The transcription factor ThPOK suppresses Runx3 and imposes CD4(+) lineage fate by inducing the SOCS suppressors of cytokine signaling. Nat Immunol 15:638–645

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Ma AY, Xie SW, Zhou JY et al (2017) Nomegestrol acetate suppresses human endometrial cancer RL95-2 cells proliferation in vitro and in vivo possibly related to upregulating expression of SUFU and Wnt7a. Int J Mol Sci 18:E1337

    PubMed  Article  CAS  Google Scholar 

  16. Naito T, Taniuchi I (2013) Roles of repressive epigenetic machinery in lineage decision of T cells. Immunology 139:151–157

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13:767–779

    CAS  PubMed  Article  Google Scholar 

  18. Ochoa-Hernandez AB, Ramos-Solano M, Meza-Canales I et al (2012) Peripheral T-lymphocytes express WNT7A and its restoration in leukemia-derived lymphoblasts inhibits cell proliferation. BMC Cancer 12:60

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Parr BA, McMahon A (1998) Sexually dimorphic development of the mammalian reproductive tract requires WNT7a. Nature 395:707–710

    CAS  PubMed  Article  Google Scholar 

  20. Qu Q, Sun G, Murai K et al (2013) Wnt7a regulates multiple steps of neurogenesis. Mol Cell Biol 33:2551–2559

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Ramos-Solano M, Meza-Canales ID, Torres-Reyes LA et al (2015) Expression of WNT genes in cervical cancer-derived cells: implication of WNT7A in cell proliferation and migration. Exp Cell Res 335:39–50

    CAS  PubMed  Article  Google Scholar 

  22. Rasmussen TA, Schmeltz Søgaard O, Brinkmann C et al (2013) Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother 9:993–1001

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Rattis FM, Voermans C, Reya T (2004) Wnt signaling in the stem cell niche. Curr Opin Hematol 11:88–94

    CAS  PubMed  Article  Google Scholar 

  24. Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    CAS  PubMed  Article  Google Scholar 

  25. Rodriguez RM, Lopez-Larrea C, Suarez-Alvarez B (2015) Epigenetic dynamics during CD4(+) T cells lineage commitment. Int J Biochem Cell Biol 67:75–85

    CAS  PubMed  Article  Google Scholar 

  26. Ross SH, Cantrell DA (2018) Signaling and function of interleukin-2 in T lymphocytes. Annu Rev Immunol 36:411–433

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Schmidl C, Delacher M, Huehn J et al (2018) Epigenetic mechanisms regulating T-cell responses. J Allergy Clin Immunol 142:728–743

    CAS  PubMed  Article  Google Scholar 

  28. Sercan Z, Pehlivan M, Sercan HO (2010) Expression profile of WNT, FZD and sFRP genes in human hematopoietic cells. Leuk Res 34:946–949

    CAS  PubMed  Article  Google Scholar 

  29. Skov S, Rieneck K, Bovin LF et al (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101:1430–1438

    CAS  PubMed  Article  Google Scholar 

  30. Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8:581–593

    CAS  PubMed  Article  Google Scholar 

  31. Staal FJ, Chhatta A, Mikkers H (2016) Caught in a Wnt storm: complexities of Wnt signaling in hematopoiesis. Exp Hematol 44:451–457

    CAS  PubMed  Article  Google Scholar 

  32. Stewart DJ (2014) Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst 106:djt356

    PubMed  Article  CAS  Google Scholar 

  33. Tennis MA, Vanscoyk MM, Wilson LA et al (2012) Methylation of Wnt7a is modulated by DNMT1 and cigarette smoke condensate in non-small cell lung cancer. PLoS ONE 7:e32921

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Tiemessen MM, Staal FJ (2013) Wnt signaling in leukemias and myeloma: T-cell factors are in control. Future Oncol 9:1757–1772

    CAS  PubMed  Article  Google Scholar 

  35. Tiemessen MM, Baert MR, Kok L et al (2014) T Cell factor 1 represses CD8 + effector T cell formation and function. J Immunol 193:5480–5487

    CAS  PubMed  Article  Google Scholar 

  36. Wallace J, Lutgen V, Avasarala S et al (2018) Wnt7a induces a unique phenotype of monocyte-derived macrophages with lower phagocytic capacity and differential expression of pro- and anti-inflammatory cytokines. Immunology 153:203–213

    CAS  PubMed  Article  Google Scholar 

  37. Wang Y, Cho C, Williams J et al (2018) Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood-brain barrier and blood-retina barrier development and maintenance. Proc Natl Acad Sci USA 115:E11827–E11836

    CAS  PubMed  Article  Google Scholar 

  38. Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4:a007864

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Willinger T, Freeman T, Herbert M et al (2006) Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J Immunol 176:1439–1446

    CAS  PubMed  Article  Google Scholar 

  40. Winn RA, Marek L, Han SY et al (2005) Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem 280:19625–19634

    CAS  PubMed  Article  Google Scholar 

  41. Wu B, Crampton SP, Hughes CC (2007) Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26:227–239

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Xu Q, Krause M, Samoylenko A et al (2016) Wnt signaling in renal cell carcinoma. Cancers 8:E57

    PubMed  Article  CAS  Google Scholar 

  43. Xue HH, Zhao DM (2012) Regulation of mature T cell responses by the Wnt signaling pathway. Ann N Y Acad Sci 1247:16–33

    CAS  PubMed  Article  Google Scholar 

  44. Zimmerman MA, Singh N, Martin PM et al (2012) Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 302:G1405–1415

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondo de Investigación en Salud – IMSS, grant number FIS/IMSS/PROT/G13/1243 and FIS/IMSS/PROT/G14/1316 both to Luis Felipe Jave-Suárez. Christian Barreto-Vargas and Monserrat Alvarez-Zavala are grateful for their scholarship obtained from Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico. We are grateful to Cristina Artaza Irigaray for proofreading of the manuscript.

Author information

Affiliations

Authors

Contributions

CB-V and MA-Z performed the experimental work, analyzed results, and contributed with figures and manuscript preparation. MG-C and GH-F provided scientific ideas and analysis of data. AA-L and LFJ-S conceived the study, provided scientific guidance, analyzed results and contributed to manuscript preparation. All authors approved this final version.

Corresponding author

Correspondence to Luis F. Jave-Suarez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barreto-Vargas, C., Alvarez-Zavala, M., Garcia-Chagollan, M. et al. WNT7A Expression is Downregulated in T Lymphocytes after T-Cell Receptor Activation Due to Histone Modifications and in T-ALL by DNA Methylation. Arch. Immunol. Ther. Exp. 68, 18 (2020). https://doi.org/10.1007/s00005-020-00583-5

Download citation

Keywords

  • WNT signaling
  • Epigenetics
  • Transcription regulation
  • T lymphocytes
  • Leukemia
  • DNA methylation
  • Histone modification