Skip to main content

Advertisement

Log in

Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Xenotransplantation is an attractive solution to the problem of allograft shortage. However, transplants across discordant species barriers are subject to vigorous immunologic and pathobiologic hurdles, some of which might be overcome with the induction of immunologic tolerance. Several strategies have been designed to induce tolerance to a xenograft at both the central (including induction of mixed chimerism and thymic transplantation) and peripheral (including adoptive transfer of regulatory cells and blocking T cell costimulation) levels. Currently, xenograft tolerance has been well-established in rodent models, but these protocols have not yet achieved similar success in nonhuman primates. This review will discuss the major barriers that impede the establishment of immunological tolerance across xenogeneic barriers and the potential solution to these challenges, and provide a perspective on the future of the development of novel tolerance-inducing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

BMT:

Bone marrow transplantation

DCs:

Dendritic cells

GTKO:

Alpha 1,3-galactosyltransferase knockout

MAb:

Monoclonal antibody

MHC:

Major histocompatibility complex

MSCs:

Mesenchymal stem cells

SIRP-α:

Signal regulatory protein alpha

TCR:

T cell receptor

Tregs:

T regulatory cells

References

  • Abe M, Qi J, Sykes M et al (2002a) Mixed chimerism induces donor-specific T cell tolerance across a highly disparate xenogeneic barrier. Blood 99:3823–3829

    Article  CAS  PubMed  Google Scholar 

  • Abe M, Cheng J, Qi J et al (2002b) Elimination of porcine hemopoietic cells by macrophages in mice. J Immunol 168:621–628

    Article  CAS  PubMed  Google Scholar 

  • Adams AB, Pearson TC, Larsen CP (2003) Heterologous immunity: an overlooked barrier to tolerance. Immunol Rev 196:147–160

    Article  CAS  PubMed  Google Scholar 

  • Anderson G, Moore NC, Owen JJ et al (1996) Cellular interactions in thymocyte development. Annu Rev Immunol 14:73–99

    Article  CAS  PubMed  Google Scholar 

  • Basker M, Alwayn IP, Buhler L et al (2001) Clearance of mobilized porcine peripheral blood progenitor cells is delayed by depletion of the phagocytic reticuloendothelial system in baboons. Transplantation 72:1278–1285

    Article  CAS  PubMed  Google Scholar 

  • Bühler LH, Cooper DK (2005) How strong is the T cell response in the pig-to-primate model? Xenotransplantation 12:85–87

    Article  PubMed  Google Scholar 

  • Bühler LH, Awwad M, Basker M et al (2000) High-dose porcine hematopoietic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation 69:2296–2304

    Article  PubMed  Google Scholar 

  • Bühler LH, Alwayn IP, Basker M et al (2001) CD40–CD154 pathway blockade requires host macrophages to induce humoral unresponsiveness to pig hematopoietic cells in baboons. Transplantation 72:1759–1768

    Article  PubMed  Google Scholar 

  • Chen W, Ford MS, Young KJ et al (2003) Role of double-negative regulatory T cells in long-term cardiac xenograft survival. J Immunol 170:1846–1853

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Lee JJ, Kim DH et al (2015) Blockade of CD40–CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 15:628–641

    Article  CAS  PubMed  Google Scholar 

  • Chong AS, Alegre ML (2014) Transplantation tolerance and its outcome during infections and inflammation. Immunol Rev 258:80–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choo JK, Seebach JD, Nickeleit V et al (1997) Species differences in the expression of major histocompatibility complex class II antigens on coronary artery endothelium: implications for cell-mediated xenoreactivity. Transplantation 64:1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Cooper DK, Ezzelarab MB, Hara H et al (2016) The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 23:83–105

    Article  PubMed  Google Scholar 

  • Duran-Struuck R, Sondermeijer HP, Bühler L et al (2017) Effect of ex vivo-expanded recipient regulatory T cells on hematopoietic chimerism and kidney allograft tolerance across MHC barriers in cynomolgus macaques. Transplantation 101:274–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eguchi H, Kuroiwa Y, Matsui A et al (2008) Intra-bone marrow cotransplantation of donor mesenchymal stem cells in pig-to-NOD/SCID mouse bone marrow transplantation facilitates short-term xenogeneic hematopoietic engraftment. Transplant Proc 40:574–577

    Article  CAS  PubMed  Google Scholar 

  • Ekser B, Cooper DK, Tector AJ (2015) The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg 23:199–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Elwood ET, Larsen CP, Cho HR et al (1998) Prolonged acceptance of concordant and discordant xenografts with combined CD40 and CD28 pathway blockade. Transplantation 65:1422–1428

    Article  CAS  PubMed  Google Scholar 

  • Ezzelarab M, Hara H, Busch J et al (2006) Antibodies directed to pig non-Gal antigens in naïve and sensitized baboons. Xenotransplantation 13:400–407

    Article  PubMed  Google Scholar 

  • Ezzelarab M, Ezzelarab C, Wilhite T et al (2011) Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses. Xenotransplantation 18:183–195

    Article  PubMed  Google Scholar 

  • Fu Y, Yi S, Wu J et al (2008) In vitro suppression of xenoimmune-mediated macrophage activation by human CD4+ CD25+ regulatory T cells. Transplantation 86:865–874

    Article  CAS  PubMed  Google Scholar 

  • Fudaba Y, Onoe T, Chittenden M et al (2008) Abnormal regulatory and effector T cell function predispose to autoimmunity following xenogeneic thymic transplantation. J Immunol 181:7649–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesemer A, Hirakata A, Shimizu A et al (2009) Results of gal-knockout porcine thymokidney xenografts. Am J Transplant 9:2669–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258:241–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gritsch HA, Glaser RM, Emery DW et al (1994) The importance of nonimmune factors in reconstitution by discordant xenogeneic hematopoietic cells. Transplantation 57:906–917

    Article  CAS  PubMed  Google Scholar 

  • Habiro K, Sykes M, Yang YG (2009) Induction of human T-cell tolerance to pig xenoantigens via thymus transplantation in mice with an established human immune system. Am J Transplant 9:1324–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BM, Pearce NW, Gurley KE et al (1990) Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J Exp Med 171:141–157

    Article  CAS  PubMed  Google Scholar 

  • Higginbotham L, Mathews D, Breeden CA et al (2015) Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation 22:221–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782

    Article  CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Ide K, Wang H, Tahara H et al (2007) Role for CD47-SIRPalpha signaling in xenograft rejection by macrophages. Proc Natl Acad Sci USA 104:5062–5066

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin MG, Vanzieleghem B, Saint-Remy JM (2001) Mechanisms of B-cell tolerance. Adv Exp Med Biol 489:99–108

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer H, Onoe T, Dahmani A et al (2014) Xenograft tolerance and immune function of human T cells developing in pig thymus xenografts. J Immunol 192:3442–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehnert AM, Yi S, Burgess JS et al (2000) Pancreatic islet xenograft tolerance after short-term costimulation blockade is associated with increased CD4+ T cell apoptosis but not immune deviation. Transplantation 69:1176–1185

    Article  CAS  PubMed  Google Scholar 

  • Li J, Andreyev O, Chen M et al (2013) Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cell Immunol 285:23–30

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ezzelarab MB, Ayares D et al (2014) The potential role of genetically-modified pig mesenchymal stromal cells in xenotransplantation. Stem Cell Rev 10:79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ligocki AJ, Niederkorn JY (2015) Advances on non-CD4+ Foxp3+ T regulatory cells: CD8+, type 1, and double negative T regulatory cells in organ transplantation. Transplantation 99:1553–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Cantor H (2008) Generation and regulation of CD8(+) regulatory T cells. Cell Mol Immunol 5:401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, He KM, Garcia B et al (2008) Adoptive transfer of double negative T regulatory cells induces B-cell death in vivo and alters rejection pattern of rat-to-mouse heart transplantation. Xenotransplantation 15:56–63

    Article  PubMed  Google Scholar 

  • Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat Immunol 11:21–27

    Article  CAS  PubMed  Google Scholar 

  • Nikolic B, Lei H, Pearson DA et al (1998) Role of intrathymic rat class II+ cells in maintaining deletional tolerance in xenogeneic rat → mouse bone marrow chimeras. Transplantation 65:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Nikolic B, Gardner JP, Scadden DT et al (1999) Normal development in porcine thymus grafts and specific tolerance of human T cells to porcine donor MHC. J Immunol 162:3402–3407

    PubMed  CAS  Google Scholar 

  • Nishimura T, Onda M, Takao S (2010) CD4+ CD25+ regulatory T cells suppressed the indirect xenogeneic immune response mediated by porcine epithelial cell pulsed dendritic cells. Xenotransplantation 17:313–323

    Article  PubMed  Google Scholar 

  • Ohdan H, Swenson KG, Kitamura H et al (2001) Tolerization of Gal alpha 1,3 Gal-reactive B cells in pre-sensitized alpha 1,3-galactosyltransferase-deficient mice by nonmyeloablative induction of mixed chimerism. Xenotransplantation 8:227–238

    Article  CAS  PubMed  Google Scholar 

  • Pilat N, Wekerle T (2010) Transplantation tolerance through mixed chimerism. Nat Rev Nephrol 6:594–605

    Article  PubMed  Google Scholar 

  • Porter CM, Bloom ET et al (2005) Human CD4+ CD25+ regulatory T cells suppress anti-porcine xenogeneic responses. Am J Transplant 5:2052–2057

    Article  PubMed  Google Scholar 

  • Puga Yung G, Schneider MK, Seebach JD (2009) Immune responses to alpha1,3galactosyltransferase knockout pigs. Curr Opin Organ Transplant 14:154–160

    Article  PubMed  Google Scholar 

  • Sablinski T, Emery DW, Monroy R et al (1999) Long-term discordant xenogeneic (porcine-to-primate) bone marrow engraftment in a monkey treated with porcine-specific growth factors. Transplantation 67:972–977

    Article  CAS  PubMed  Google Scholar 

  • Sachs DH (2003) Tolerance: of mice and men. J Clin Invest 111:1819–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  CAS  PubMed  Google Scholar 

  • Samstein B, Platt JL (2001) Xenotransplantation and tolerance. Philos Trans R Soc Lond B Biol Sci 356:749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharabi Y, Sachs DH (1989) Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 169:493–502

    Article  CAS  PubMed  Google Scholar 

  • Sharabi Y, Aksentijevich I, Sundt TM IIIrd et al (1990) Specific tolerance induction across a xenogeneic barrier: production of mixed rat/mouse lymphohematopoietic chimeras using a nonlethal preparative regimen. J Exp Med 172:195–202

    Article  CAS  PubMed  Google Scholar 

  • Shin JS, Min BH, Kim JM et al (2016) Failure of transplantation tolerance induction by autologous regulatory T cells in the pig-to-non-human primate islet xenotransplantation model. Xenotransplantation 23:300–309

    Article  PubMed  Google Scholar 

  • Simon AR, Warrens AN, Sykes M (1999) Efficacy of adhesive interactions in pig-to-human xenotransplantation. Immunol Today 20:323–330

    Article  CAS  PubMed  Google Scholar 

  • Singh NJ, Schwartz RH (2006) Primer: mechanisms of immunologic tolerance. Nat Clin Pract Rheumatol 2:44–52

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Seavey CN, Horvath KA et al (2012) Ex-vivo expanded baboon CD4+ CD25 Hi Treg cells suppress baboon anti-pig T and B cell immune response. Xenotransplantation 19:102–111

    Article  PubMed  Google Scholar 

  • Sprent J, Kishimoto H (2001) The thymus and central tolerance. Philos Trans R Soc Lond B Biol Sci 356:609–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Yi S, O’Connell PJ (2010) Foxp3 regulates human natural CD4+ CD25+ regulatory T-cell-mediated suppression of xenogeneic response. Xenotransplantation 17:121–130

    Article  CAS  PubMed  Google Scholar 

  • Tena AA, Kurtz J, Leonard DA et al (2014) Transgenic expression of human CD47 markedly increases engraftment in a murine model of pig-to-human hematopoietic cell transplantation. Am J Transplant 14:2713–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena AA, Sachs DH, Mallard C et al (2017) Prolonged survival of pig skin on baboons after administration of pig cells expressing human CD47. Transplantation 101:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson P, Badell IR, Lowe M et al (2012) Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival. Am J Transplant 12:1765–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita Y, Lee LA, Sykes M (1994) Engraftment of rat bone marrow and its role in negative selection of murine T cells in mice conditioned with a modified nonmyeloablative regimen. Xenotransplantation 1:109–117

    Article  Google Scholar 

  • Tseng YL, Dor FJ, Kuwaki K et al (2004) Bone marrow transplantation from α-1,3-galactosyltransferase gene-knockout pigs in baboons. Xenotransplantation 11:361–370

    Article  PubMed  Google Scholar 

  • Vernon-Wilson EF, Kee WJ, Willis AC et al (2000) CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur J Immunol 30:2130–2137

    PubMed  CAS  Google Scholar 

  • Wang H, VerHalen J, Madariaga ML et al (2007) Attenuation of phagocytosis of xenogeneic cells by manipulating CD47. Blood 109:836–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Ahmed EB, Chen L et al (2010) Infection with the intracellular bacterium, Listeria monocytogenes, overrides established tolerance in a mouse cardiac allograft model. Am J Transplant 10:1524–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Hogquist KA (2012) T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 4:a006957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Scalea J (2012) Thymic transplantation in pig-to-nonhuman primates for the induction of tolerance across xenogeneic barriers. Methods Mol Biol 885:191–212

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Yazawa K, Shimizu A et al (2005) Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11:32–34

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Sykes M, Sachs DH (2017) Tolerance in xenotransplantation. Curr Opin Organ Transplant 22:522–528

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang YG, Sergio JJ, Swenson K et al (1996) Donor-specific growth factors promote swine hematopoiesis in severe combined immune deficient mice. Xenotransplantation 3:92–101

    Article  Google Scholar 

  • Yi S, Ji M, Wu J et al (2012) Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin-10 in humanized mice. Diabetes 61:1180–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai Y, Meng L, Gao F et al (2002) Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol 169:4667–4673

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Swenson K, Sergio JJ et al (1996) Skin graft tolerance across a discordant xenogeneic barrier. Nat Med 2:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Fishman JA, Sergio JJ et al (1997a) Immune restoration by fetal pig thymus grafts in T cell-depleted, thymectomized mice. J Immunology 158:1641–1649

    CAS  Google Scholar 

  • Zhao Y, Sergio JJ, Swenson K et al (1997b) Positive and negative selection of functional mouse CD4 cells by porcine MHC in pig thymus grafts. J Immunol 159:2100–2107

    PubMed  CAS  Google Scholar 

  • Zhao Y, Rodriguez-Barbosa JI, Shimizu A et al (2003) Despite efficient intrathymic negative selection of host-reactive T cells, autoimmune disease may develop in porcine thymus-grafted athymic mice: evidence for failure of regulatory mechanisms suppressing autoimmunity. Transplantation 75:1832–1840

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFC1103704), National Natural Science Foundation of China (31500639), Shenzhen Foundation of Science and Technology (JCYJ20170307094549868, JCYJ20160427191926655, JCYJ20160427192552523, JCYJ20160229204849975 and GCZX2015043017281705), Fund for High Level Medical Discipline Construction of Shenzhen (2016031638), Sanming Project of Medicine in Shenzhen (SZSM201412020), Shenzhen Foundation of Health and Family Planning Commission (SZXJ2017021), Shenzhen Baoan District Science and Technology Bureau (2018JD124), Clinical Doctor-Basic Scientist Combination Foundation of Shenzhen Secondary people’s Hospital and Key Laboratory Project of Shenzhen Second People’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisha Mou.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., He, C., Liu, J. et al. Transplant Tolerance: Current Insights and Strategies for Long-Term Survival of Xenografts. Arch. Immunol. Ther. Exp. 66, 355–364 (2018). https://doi.org/10.1007/s00005-018-0517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-018-0517-7

Keywords

Navigation