Adaptive Immune Cell Dysregulation and Role in Acute Pancreatitis Disease Progression and Treatment

  • Pascaline Fonteh
  • Martin Smith
  • Martin Brand


Acute pancreatitis (AP) is an inflammation of the pancreas caused by various stimuli including excessive alcohol consumption, gallstone disease and certain viral infections. Managing specifically the severe form of AP is limited due to lack of an understanding of the complex immune events that occur during AP involving immune cells and inflammatory molecules such as cytokines. The relative abundance of various immune cells resulting from the immune dysregulation drives disease progression. In this review, we examine the literature on the adaptive immune cells in AP, the prognostic value of these cells in stratifying patients into appropriate care and treatment strategies based on cell frequency in different AP severities are discussed.


Acute pancreatitis Adaptive immune cells 



Acute pancreatitis


Compensatory anti-inflammatory response syndrome


Infectious pancreatic necrosis


Mild AP


Neutrophil–lymphocyte ratio




Severe AP


Systemic inflammatory response syndrome


Toll-like receptors



This Research was supported by Faculty of Health Sciences University of the Witwatersrand Individual Research Grant 001.283.8441101.5121105.5142 and Seed funding Grant 001 251 8441101 5121105 000000 0000000000 4550. The authors would like to thank Drs M. Nel and J. Devar for critical reading of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing interests.


  1. Abdulla A, Awla D, Thorlacius H et al (2011) Role of neutrophils in the activation of trypsinogen in severe acute pancreatitis. J Leukoc Biol 90:975–982PubMedCrossRefGoogle Scholar
  2. Azab B, Jaglall N, Atallah JP et al (2011) Neutrophil-lymphocyte ratio as a predictor of adverse outcomes of acute pancreatitis. Pancreatology 11:445–452PubMedCrossRefGoogle Scholar
  3. Banks PA, Bollen TL, Dervenis C et al (2013) Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut 62:102–111PubMedCrossRefGoogle Scholar
  4. Bhatia M (2004) Apoptosis of pancreatic acinar cells in acute pancreatitis: is it good or bad? J Cell Mol Med 8:402–409PubMedCrossRefGoogle Scholar
  5. Bhatia M, Brady M, Shokuhi S et al (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190:117–125PubMedCrossRefGoogle Scholar
  6. Bhatia M, Wong FL, Cao Y et al (2005) Pathophysiology of acute pancreatitis. Pancreatology 5:132–144PubMedCrossRefGoogle Scholar
  7. Binnetoğlu E, Akbal E, Güneş F et al (2014) The prognostic value of neutrophil-lymphocyte ratio in acute pancreatitis is controversial. J Gastrointest Surg 18:885PubMedCrossRefGoogle Scholar
  8. Booth DM, Mukherjee R, Sutton R et al (2011) Calcium and reactive oxygen species in acute pancreatitis: friend or foe? Antioxid Redox Signal 15:2683–2698PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bradley E 3rd, Murphy F, Ferguson C (1989) Prediction of pancreatic necrosis by dynamic pancreatography. Ann Surg 210:495–503PubMedPubMedCentralCrossRefGoogle Scholar
  10. Broere F, Apasov SG, Sitkovsky MV et al (2011) A2 T cell subsets and T cell-mediated immunity. In: Nijkamp FP, Parnham MJ (eds) Principles of immunopharmacology, 3rd edn. Springer, Basel, pp 15–27CrossRefGoogle Scholar
  11. Büchler M, Malfertheiner P, Schoetensack C et al (1986) Value of biochemical and imaging procedures for the diagnosis and prognosis of acute pancreatitis–results of a prospective clinical study. Z Gastroenterol 24:100–109PubMedGoogle Scholar
  12. Büchler M, Friess H, Uhl W et al (1992) Clinical relevance of experimental acute pancreatitis. Eur Surg Res 24(Suppl 1):85–88PubMedGoogle Scholar
  13. Chen KL, Lv ZY, Yang HW et al (2016) Effects of tocilizumab on experimental severe acute pancreatitis and associated acute lung injury. Crit Care Med 44:e664–e677PubMedCrossRefGoogle Scholar
  14. Christophi C, McDermott F, Hughes ES (1985) Prognostic significance of the absolute lymphocyte count in acute pancreatitis. Am J Surgery 150:295–296CrossRefGoogle Scholar
  15. Criddle D, Gerasimenko JV, Baumgartner H et al (2007) Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ 14:1285–1294PubMedCrossRefGoogle Scholar
  16. Curley PJ, McMahon MJ, Lancaster F et al (1993) Reduction in circulating levels of CD4-positive lymphocytes in acute pancreatitis: relationship to endotoxin, interleukin 6 and disease severity. Br J Surg 80:1312–1315PubMedCrossRefGoogle Scholar
  17. Dabrowski A, Osada J, Dabrowska M et al (2008) Monocyte subsets and natural killer cells in acute pancreatitis. Pancreatology 8:126–134PubMedCrossRefGoogle Scholar
  18. Dang SC, Zhang JX, Qu JG et al (2008) Dynamic changes of IL-2/IL-10, sFas and expression of Fas in intestinal mucosa in rats with acute necrotizing pancreatitis. World J Gastroenterol 14:2246–2250PubMedPubMedCentralCrossRefGoogle Scholar
  19. de Jager CP, van Wijk PT, Mathoera RB et al (2010) Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care 14:R192PubMedPubMedCentralCrossRefGoogle Scholar
  20. Demols A, Le Moine O, Desalle F et al (2000) CD4+ T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 118:582–590PubMedCrossRefGoogle Scholar
  21. DiMagno MJ, DiMagno EP (2007) New advances in acute pancreatitis. Curr Opin Gastroenterol 23:494–501PubMedPubMedCentralGoogle Scholar
  22. Dionigi R, Rovera F, Dionigi G et al (2006) Infected pancreatic necrosis. Surg Infect 7(Suppl 2):S49–S52CrossRefGoogle Scholar
  23. Du WD, Yuan ZR, Sun J et al (2003) Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J Gastroenterol 9:2565–2569PubMedPubMedCentralCrossRefGoogle Scholar
  24. Duffy BK, Gurm HS, Rajagopal V et al (2006) Usefulness of an elevated neutrophil to lymphocyte ratio in predicting long-term mortality after percutaneous coronary intervention. Am J Cardiol 97:993–996PubMedCrossRefGoogle Scholar
  25. Escobar J, Pereda J, Lopez-Rodas G et al (2012) Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 52:819–837PubMedCrossRefGoogle Scholar
  26. Fakhari S, Abdulmohammadi K, Panahi Y et al (2015) Flow cytometric analysis of inflammatory cells in experimental acute pancreatitis. Arch Med Lab Sci 1:93–99Google Scholar
  27. Filipovich Y, Agrawal V, Crawford SE et al (2015) Depletion of polymorphonuclear leukocytes has no effect on preterm delivery in a mouse model of Escherichia coli-induced labor. Am J Obstet Gynecol 213:697 (e1–10)PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fink GW, Norman JG (1996) Intrapancreatic interleukin-1β gene expression by specific leukocyte populations during acute pancreatitis. J Surg Res 63:369–373PubMedCrossRefGoogle Scholar
  29. Frossard JL, Saluja A, Bhagat L et al (1999) The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology 116:694–701PubMedCrossRefGoogle Scholar
  30. Frossard JL, Steer ML, Pastor CM (2008) Acute pancreatitis. Lancet 371:143–152PubMedCrossRefGoogle Scholar
  31. Gallagher SF, Yang J, Baksh K et al (2004) Acute pancreatitis induces FasL gene expression and apoptosis in the liver 1, 2. J Surg Res 122:201–209PubMedCrossRefGoogle Scholar
  32. Greenfield EA, Nguyen KA, Kuchroo VK (1998) CD28/B7 costimulation: a review. Crit Rev Immunol 18:389–418PubMedCrossRefGoogle Scholar
  33. Gukovskaya AS, Vaquero E, Zaninovic V et al (2002) Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122:974–984PubMedCrossRefGoogle Scholar
  34. Gul’muradova NT, Geinits AV, Ziazin S (2012) The characteristics of cell and humoral immunity in patients with acute pancreatitis under impact of cold laser radiation. Klin Lab Diagn 7:46–49Google Scholar
  35. Guo ZZ, Wang P, Yi ZH et al (2014) The crosstalk between gut inflammation and gastrointestinal disorders during acute pancreatitis. Curr Pharm Des 20:1051–1062PubMedCrossRefGoogle Scholar
  36. Habtezion A, Algül H (2016) Immune modulation in acute and chronic pancreatitis. Pancreapedia Exocrine Pancreas Knowl Base. CrossRefGoogle Scholar
  37. Halacheva K, Minkov G, Yovtchev Y et al (2014) Changes in peripheral blood lymphocyte populations in patients with acute pancreatitis. Trakia J Sci 12:50–54Google Scholar
  38. Hegyi P, Rakonczay Z Jr (2011) The role of nitric oxide in the physiology and pathophysiology of the exocrine pancreas. Antioxid Redox Signal 15:2723–2741PubMedCrossRefGoogle Scholar
  39. Hoque R, Malik A, Gorelick F et al (2012) The sterile inflammatory response in acute pancreatitis. Pancreas 41:353–357PubMedPubMedCentralCrossRefGoogle Scholar
  40. Huan C, Kim D, Ou P et al (2016) Mechanisms of interleukin-22’s beneficial effects in acute pancreatitis. World J Gastrointest Pathophysiol 7:108–116PubMedPubMedCentralCrossRefGoogle Scholar
  41. Iyer SS, Pulskens WP, Sadler JJ et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106:20388–20393PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jelinek DF (2000) Regulation of B lymphocyte differentiation. Ann Allergy Asthma Immunol 84:375–385PubMedCrossRefGoogle Scholar
  43. Jenkins MK, Johnson JG (1993) Molecules involved in T-cell costimulation. Curr Opin Immunol 5:361–367PubMedCrossRefGoogle Scholar
  44. Kambhampati S, Park W, Habtezion A (2014) Pharmacologic therapy for acute pancreatitis. World J Gastroenterol 20:16868–16880PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kay PS, Smith M, Brand M (2017) The initiating immune response of acute pancreatitis may be mediated by the T-helper 17 pathway. JOP J Pancreas 18(1):33–37Google Scholar
  46. Kell MR, Kavanagh EG, Goebel A et al (1999) Injury primes the immune system for an enhanced and lethal T-cell response against bacterial superantigen. Shock 12:139–144PubMedCrossRefGoogle Scholar
  47. Kim H, Seo JY, Roh KH et al (2000) Suppression of NF-κB activation and cytokine production by N-acetylcysteine in pancreatic acinar cells. Free Radic Biol Med 29:674–683PubMedCrossRefGoogle Scholar
  48. Koussoulas V, Tzivras M, Karagianni V et al (2006) Monocytes in systematic inflammatory response syndrome: differences between sepsis and acute pancreatitis. World J Gastroenterol 12:6711–6714PubMedCrossRefGoogle Scholar
  49. Kumar R, Bhatia M (2014) Cells and mediators of inflammation in acute pancreatitis. Clin Anti-Inflamm Anti-Allergy Drugs 1:11–23CrossRefGoogle Scholar
  50. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedCrossRefGoogle Scholar
  51. Lanier L (2007) Back to the future–defining NK cells and T cells. Eur J Immunol 37:1424–1426PubMedCrossRefGoogle Scholar
  52. Lankisch PG, Apte M, Banks PA (2015) Acute pancreatitis. Lancet 386:85–96PubMedCrossRefGoogle Scholar
  53. LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood 112:1570–1580PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lee RK (2012) Intra-abdominal hypertension and abdominal compartment syndrome a comprehensive overview. Crit Care Nurse 32:19–31PubMedCrossRefGoogle Scholar
  55. Li Z, Ma Q, Luo Y (2009) Effect of resveratrol-induced FasL up-regulation on the apoptosis of pancreatic acinar cells in rats with severe acute pancreatitis. Nan Fang Yi Ke Da Xue Xue Bao 29:454–457PubMedGoogle Scholar
  56. Li Q, Wang C, Zhang Q et al (2012) The role of sphingosine kinase 1 in patients with severe acute pancreatitis. Ann Surg 255:954–962PubMedCrossRefGoogle Scholar
  57. Li J, Yang WJ, Huang LM et al (2014) Immunomodulatory therapies for acute pancreatitis. World J Gastroenterol 20:16935–16947PubMedPubMedCentralCrossRefGoogle Scholar
  58. Liou GY, Storz P (2015) Inflammatory macrophages in pancreatic acinar cell metaplasia and initiation of pancreatic cancer. Oncoscience 2:247–251PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liu Z, Shen Y, Cui N et al (2011) Clinical observation of immunity for severe acute pancreatitis. Inflammation 34:426–431PubMedCrossRefGoogle Scholar
  60. Liu Y, Wang L, Cai Z et al (2015) the decrease of peripheral blood CD4+ T cells indicates abdominal compartment syndrome in severe acute pancreatitis. PLoS One 10:e0135768PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lugli E, Troiano L, Cossarizza A (2009) Investigating T cells by polychromatic flow cytometry. Methods Mol Biol 514:47–63PubMedCrossRefGoogle Scholar
  62. Makhija R, Kingsnorth AN (2002) Cytokine storm in acute pancreatitis. J Hepatobiliary Pancreat Surg 9:401–410PubMedCrossRefGoogle Scholar
  63. Mareninova OA, Sung KF, Hong P et al (2006) Cell death in pancreatitis caspases protect from necrotizing pancreatitis. J Biol Chem 281:3370–3381PubMedCrossRefGoogle Scholar
  64. Mayer JM, Laine VJ, Gezgin A et al (2000) Single doses of FK506 and OKT3 reduce severity in early experimental acute pancreatitis. Eur J Surgery 166:734–741CrossRefGoogle Scholar
  65. Mayerle J, Dummer A, Sendler M et al (2012) Differential roles of inflammatory cells in pancreatitis. J Gastroenterol Hepatol 27(Suppl 2):47–51PubMedCrossRefGoogle Scholar
  66. Mentula P, Kylanpaa-Back ML, Kemppainen E et al (2003) Decreased HLA (human leucocyte antigen)-DR expression on peripheral blood monocytes predicts the development of organ failure in patients with acute pancreatitis. Clin Sci 105:409–417PubMedCrossRefGoogle Scholar
  67. Mikhaylov VA (2015) The use of Intravenous Laser Blood Irradiation (ILBI) at 630–640 nm to prevent vascular diseases and to increase life expectancy. Laser Ther 24:15–26PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mora A, Perez-Mateo M, Viedma J et al (1997) Activation of cellular immune response in acute pancreatitis. Gut 40:794–797PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mylona V, Koussoulas V, Tzivras D et al (2011) Changes in adaptive and innate immunity in patients with acute pancreatitis and systemic inflammatory response syndrome. Pancreatology 11:475–481PubMedCrossRefGoogle Scholar
  70. Nakayama S, Nishio A, Yamashina M et al (2014) Acquired immunity plays an important role in the development of murine experimental pancreatitis induced by alcohol and lipopolysaccharide. Pancreas 43:28–36PubMedCrossRefGoogle Scholar
  71. Ni J, Hu G, Xiong J et al (2013) Involvement of interleukin-17A in pancreatic damage in rat experimental acute necrotizing pancreatitis. Inflammation 36:53–65PubMedCrossRefGoogle Scholar
  72. Norman JG (1999) New approaches to acute pancreatitis: role of inflammatory mediators. Digestion 60(Suppl 1):57–60PubMedCrossRefGoogle Scholar
  73. Oiva J, Mustonen H, Kylanpaa ML et al (2010) Acute pancreatitis with organ dysfunction associates with abnormal blood lymphocyte signaling: controlled laboratory study. Crit Care 14:R207PubMedPubMedCentralCrossRefGoogle Scholar
  74. Oiva J, Mustonen H, Kylanpaa ML et al (2013) Patients with acute pancreatitis complicated by organ dysfunction show abnormal peripheral blood polymorphonuclear leukocyte signaling. Pancreatology 13:118–124PubMedCrossRefGoogle Scholar
  75. Papachristou GI, Clermont G, Sharma A et al (2007) Risk and markers of severe acute pancreatitis. Gastroenterol Clin North Am 36:277–296PubMedCrossRefGoogle Scholar
  76. Park JJ, Jang HJ, Oh IY et al (2013) Prognostic value of neutrophil to lymphocyte ratio in patients presenting with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Am J Cardiol 111:636–642PubMedCrossRefGoogle Scholar
  77. Parzyan G, Geinits A (2001) Treatment of acute pancreatitis with mexidol and low-intensity laser radiation. In: Low-Level Laser Therapy, 2001. In: Proceedings of the SPIE, vol 4422, pp 92–97.
  78. Pezzilli R, Billi P, Beltrandi E et al (1995) Circulating lymphocyte subsets in human acute pancreatitis. Pancreas 11:95–100PubMedCrossRefGoogle Scholar
  79. Pezzilli R, Maldini M, Morselli-Labate AM et al (2003) Early activation of peripheral lymphocytes in human acute pancreatitis. J Clin Gastroenterol 36:360–363PubMedCrossRefGoogle Scholar
  80. Piccinini A, Midwood K (2010) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010:1–21. CrossRefGoogle Scholar
  81. Pichler M, Hutterer GC, Stoeckigt C et al (2013) Validation of the pre-treatment neutrophil–lymphocyte ratio as a prognostic factor in a large European cohort of renal cell carcinoma patients. Br J Cancer 108:901–907PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pietruczuk M, Dabrowska MI, Wereszczynska-Siemiatkowska U et al (2006) Alteration of peripheral blood lymphocyte subsets in acute pancreatitis. World J Gastroenterol 12:53445351CrossRefGoogle Scholar
  83. Pinhu L, Qin Y, Xiong B et al (2014) Overexpression of Fas and FasL is associated with infectious complications and severity of experimental severe acute pancreatitis by promoting apoptosis of lymphocytes. Inflammation 37:1202–1212PubMedPubMedCentralCrossRefGoogle Scholar
  84. Qiang F, Naiqiang C, Wenli Y et al (2010) Percentages of CD4+ T regulatory cells and HLA-DR expressing monocytes in severe intra-abdominal infections. Scand J Infect Dis 42:475–478CrossRefGoogle Scholar
  85. Qin Y, Liao P, He S et al (2013a) Detection of FasL mRNA, sFasL and their regulatory effect on T lymphocyte subsets in patients with severe acute pancreatitis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 29:1189–1192PubMedGoogle Scholar
  86. Qin Y, Pinhu L, You Y et al (2013b) The role of Fas expression on the occurrence of immunosuppression in severe acute pancreatitis. Dig Dis Sci 58:3300–3307PubMedCrossRefGoogle Scholar
  87. Rakonczay Z, Hegyi P, Takacs T et al (2008) The role of NF-κB activation in the pathogenesis of acute pancreatitis. Gut 57:259–267PubMedCrossRefGoogle Scholar
  88. Rinderknecht H (1988) Fatal pancreatitis, a consequence of excessive leukocyte stimulation? Int J Pancreatol 3:105–112PubMedGoogle Scholar
  89. Rotstein OD (2014) Circulating cytokines in predicting development of severe acute pancreatitis. Crit Care 18:575PubMedPubMedCentralCrossRefGoogle Scholar
  90. Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252PubMedCrossRefGoogle Scholar
  91. Schmidt AI, Kühlbrey C, Lauch R et al (2017) The predominance of a naive T helper cell subset in the immune response of experimental acute pancreatitis. Pancreatology 17:209–218PubMedCrossRefGoogle Scholar
  92. Schütte K, Malfertheiner P (2008) Markers for predicting severity and progression of acute pancreatitis. Best Pract Res Clin Gastroenterol 22:75–90PubMedCrossRefGoogle Scholar
  93. Shamoon M, Deng Y, Chen YQ et al (2016) Therapeutic implications of innate immune system in acute pancreatitis. Expert Opin Ther Targets 20:73–87PubMedCrossRefGoogle Scholar
  94. Shang D, Qi QH, Wang BZ et al (2007) Role of polymorphonuclear neutrophil apoptosis and expression of Fas and caspase-3 in the systemic inflammatory response syndrome. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 19:11–13PubMedGoogle Scholar
  95. Shen Y, Cui NQ (2012) Clinical observation of immunity in patients with secondary infection from severe acute pancreatitis. Inflamm Res 61:743–748PubMedCrossRefGoogle Scholar
  96. Shen X, Sun J, Ke L et al (2015) Reduced lymphocyte count as an early marker for predicting infected pancreatic necrosis. BMC Gastroenterol 15:147PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shrivastava P, Bhatia M (2010) Essential role of monocytes and macrophages in the progression of acute pancreatitis. World J Gastroenterol 16:3995–4002PubMedPubMedCentralCrossRefGoogle Scholar
  98. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407PubMedCrossRefGoogle Scholar
  99. Steinberg WM, Schlesselman SE (1987) Treatment of acute pancreatitis: comparison of animal and human studies. Gastroenterology 93:1420–1427PubMedCrossRefGoogle Scholar
  100. Sun JC, Beilke JN, Lanier LL (2009) Adaptive immune features of natural killer cells. Nature 457:557–561PubMedPubMedCentralCrossRefGoogle Scholar
  101. Suppiah A, Malde D, Arab T et al (2013) The prognostic value of the neutrophil–lymphocyte ratio (NLR) in acute pancreatitis: identification of an optimal NLR. J Gastrointest Surg 17:675–681PubMedCrossRefGoogle Scholar
  102. Sweeney K, Kell M, Coates C et al (2003) Serum antigen (s) drive the proinflammatory T cell response in acute pancreatitis. Br J Surg 90:313–319PubMedCrossRefGoogle Scholar
  103. Takeyama Y (2005) Significance of apoptotic cell death in systemic complications with severe acute pancreatitis. J Gastroenterol 40:1–10PubMedCrossRefGoogle Scholar
  104. Takeyama Y, Takase K, Ueda T et al (2000) Peripheral lymphocyte reduction in severe acute pancreatitis is caused by apoptotic cell death. J Gastrointest Surg 4:379–387PubMedCrossRefGoogle Scholar
  105. Ueda T, Takeyama Y, Yasuda T et al (2006) Immunosuppression in patients with severe acute pancreatitis. J Gastroenterol 41:779–784PubMedCrossRefGoogle Scholar
  106. Uehara S, Gothoh K, Handa H et al (2003) Immune function in patients with acute pancreatitis. J Gastroenterol Hepatol 18:363–370PubMedCrossRefGoogle Scholar
  107. Vonlaufen A, Apte M, Imhof B et al (2007) The role of inflammatory and parenchymal cells in acute pancreatitis. J Pathol 213:239–248PubMedCrossRefGoogle Scholar
  108. Ward NS, Casserly B, Ayala A (2008) The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clin Chest Med 29:617–625PubMedPubMedCentralCrossRefGoogle Scholar
  109. Widdison AL, Cunningham S (1996) Immune function early in acute pancreatitis. Br J Surg 83:633–636PubMedCrossRefGoogle Scholar
  110. Witko-Sarsat V, Pederzoli-Ribeil M, Hirsh E et al (2011) Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 32:117–124PubMedCrossRefGoogle Scholar
  111. Xue J, Nguyen DT, Habtezion A (2012) Aryl hydrocarbon receptor regulates pancreatic IL-22 production and protects mice from acute pancreatitis. Gastroenterology 143:1670–1680PubMedPubMedCentralCrossRefGoogle Scholar
  112. Xue J, Sharma V, Habtezion A (2014) Immune cells and immune-based therapy in pancreatitis. Immunol Res 58:378–386PubMedCrossRefGoogle Scholar
  113. Yang Z, Zhang Y, Dong L et al (2015) The reduction of peripheral blood CD4+ T cell indicates persistent organ failure in acute pancreatitis. PLoS One 10:e0125529PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yazdi AS, Guarda G, D’Ombrain MC et al (2010) Inflammatory caspases in innate immunity and inflammation. J Innate Immun 2:228–237PubMedCrossRefGoogle Scholar
  115. Yubero S, Ramudo L, Manso MA et al (2009) Targeting peripheral immune response reduces the severity of necrotizing acute pancreatitis. Crit Care Med 37:240–245PubMedCrossRefGoogle Scholar
  116. Zaninovic V, Gukovskaya AS, Gukovsky I et al (2000) Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol Gastroint Liver Physiol 279:G666–G676CrossRefGoogle Scholar
  117. Zhang X, Chen L, Luo L et al (2008) Study of the protective effects of dexamethasone on ileum mucosa injury in rats with severe acute pancreatitis. Pancreas 37:e74–e82PubMedCrossRefGoogle Scholar
  118. Zhang Y, Wu W, Dong L et al (2016) Neutrophil to lymphocyte ratio predicts persistent organ failure and in-hospital mortality in an Asian Chinese population of acute pancreatitis. Medicine 95:e4746PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zheng X, Li S-B, Wang Y et al (2010) Changes of T lymphocyte subsets before and after treatment of acute pancreatitis and its clinical significance [J]. Mod Med J 4:027Google Scholar
  120. Zheng L, Xue J, Jaffee EM et al (2013) Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology 144:1230–1240PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhulai GA, Oleinik EK, Ostrovskii KA et al (2014) Alterations of lymphocyte subsets and indicators of immune suppression in patients with acute pancreatitis. Eksp Klin Gastroenterol 9:21–25Google Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2017

Authors and Affiliations

  1. 1.Department of Surgery, School of Clinical Medicine, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations