Skip to main content

Advertisement

Log in

Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The similarity of Lyme borreliosis to other diseases and its complex pathogenesis present diagnostic and therapeutic difficulties. The changes that occur at the cellular and molecular levels after a Borrelia sp. infection still remain poorly understood. Therefore, the present study focused on the expression of TLR and TLR-signaling genes in human dermal fibroblasts in the differentiation of an infection with Borrelia burgdorferi sensu lato spirochetes. Normal human dermal fibroblasts were cultured with the spirochetes of Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii. Total RNA was extracted from the cells using TRIzol reagent. The analysis of the expression profiles of TLRs and TLR-related genes was performed using commercially available oligonucleotide microarrays of HG-U133A. The GeneSpring 12.0 platform and significance analysis of microarrays were used for the statistical analysis of microarray data. The analyses using the oligonucleotide microarray and QRT-PCR techniques permitted to identify the genes encoding TLR4 and TLR6 as specific for infection with B. afzelii and B. burgdorferi sensu stricto. In turn, TLR3 was only characteristic for an infection with B. burgdorferi sensu stricto. There were no changes in the TLR gene expression after infection with B. garinii. Our findings confirm that Borrelia has a major effect on fibroblast gene expression. Further characterization of changes in gene expression may lead to valuable insights into the role of the toll-like receptor in the pathogenesis of Lyme disease and may provide guidelines for the development of diagnostic markers for an infection with a particular Borrelia genospecies. Moreover, this will help to identify better treatment strategies for Lyme disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alikhani M, Maclellan CM, Raptis M et al (2007) Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS, MAP kinases, and the FOXO1 transcription factor. Am J Physiol Cell Physiol 292:850–856

    Article  Google Scholar 

  • Baranton G, Postic D, Saint Girons I et al (1992) Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol 42:378–383

    Article  CAS  PubMed  Google Scholar 

  • Berezowski P, Strzalka-Mrozik B, Forminska-Kapuscik M et al (2012) Posttraumatic temporal TGF-β mRNA expression in lens epithelial cells of paediatric patients. Folia Biol 58:24–29

    CAS  Google Scholar 

  • Bernardino AL, Myers TA, Alvarez X et al (2008) Toll-like receptors: insights into their possible role in the pathogenesis of lyme neuroborreliosis. Infect Immun 76:4385–4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biesiada G, Czepiel J, Leśniak MR et al (2012) Lyme disease: review. Arch Med Sci 8:978–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter C (2011) Alzheimer’s disease: APP, gamma secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and their relationships with herpes simplex, c. pneumoniae, other suspect pathogens, and the immune system. Int J Alzheimers Dis 2011:501862

    PubMed  PubMed Central  Google Scholar 

  • Cervantes JL, Hawley KL, Benjamin SJ et al (2014) Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 4:55

    PubMed  PubMed Central  Google Scholar 

  • Chmielewski T, Tylewska-Wierzbanowska S (2011) Inhibition of fibroblast apoptosis by Borrelia afzelii, Coxiella burnetii and Bartonella henselae. Pol J Microbiol 60:269–272

    Article  PubMed  Google Scholar 

  • Chrominski K, Tkacz M (2015) Comparison of high-level microarray analysis methods in the context of result consistency. PLoS One 10:e0128845

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorward DW, Huguenel ED, Davis G et al (1992) Interactions between extracellular Borrelia burgdorferi proteins and non-Borrelia-directed immunoglobulin M antibodies. Infect Immun 60:838–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elkon R, Linhart C, Halperin Y et al (2007) Functional genomic delineation of TLR-induced transcriptional networks. BMC Genom 8:394

    Article  Google Scholar 

  • Gęca A, Gola J, Dudek S et al (2012) Expression of genes associated with H factor in fibroblasts infected with Borrelia spirochetes. Scand J Immunol 76:354–358

    Article  PubMed  Google Scholar 

  • Gola J, Dudek S, Jasik K et al (2014) The impact of three genospecies of Borrelia on expression of genes associated with chemokines and its receptors in normal human dermal fibroblasts in vivo. Eur J Inflamm 2:277–285

    Article  Google Scholar 

  • Jabłońska E, Pużewska W, Marcińczyk M et al (2003) Interleukina 6 w hodowlach neutrofilów i komórek jednojądrzastych oraz w surowicy krwi pacjentów w przebiegu boreliozy z Lyme. Med Dośw Mikrobiol 55:81–87

    PubMed  Google Scholar 

  • Jones NC, Germain A, Riley KE et al (1994) Borrelia burgdorferi decreases hyaluronan synthesis but increases IL-6 production by fibroblasts. Microb Pathog 16:261–267

    Article  CAS  PubMed  Google Scholar 

  • Lieskovska J, Kopecky J (2012) Effect of tick saliva on signalling pathways activated by TLR-2 ligand and Borrelia afzelii in dendritic cells. Parasite Immunol 34:421–429

    Article  CAS  PubMed  Google Scholar 

  • Marchal CM, Luft BJ, Yang X et al (2009) Defensin is suppressed by tick salivary gland extract during the in vitro interaction of resident skin cells with Borrelia burgdorferi. J Invest Dermatol 129:2515–2517

    Article  CAS  PubMed  Google Scholar 

  • Miklossy J (2008) Chronic inflammation and amyloidogenesis in Alzheimer’s disease—role of Spirochetes. J Alzheimers Dis 13:381–391

    CAS  PubMed  Google Scholar 

  • Miklossy J, Khalili K, Gern L et al (2004) Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimers Dis 6:639–649

    PubMed  Google Scholar 

  • Miklossy J, Kis A, Radenovic A et al (2006) Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging 27:228–236

    Article  CAS  PubMed  Google Scholar 

  • Oosting M, Ter Hofstede H, Sturm P et al (2011) TLR1/TLR2 heterodimers play an important role in the recognition of Borrelia spirochetes. PLoS One 6:e25998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy G, Fevrier HB, Philipp MT (2013) Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes. Neurosci Lett 556:200–203

    Article  CAS  PubMed  Google Scholar 

  • Perticarari S, Presani G, Prodan M et al (2003) Lymphocyte apoptosis co-cultured with Borrelia burgdorferi. Microb Pathog 35:139–145

    Article  PubMed  Google Scholar 

  • Ramesh G, Santana-Gould L, Inglis FM et al (2013) The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal rootganglia. J Neuroinflamm 10:88

    Article  CAS  Google Scholar 

  • Roomi MW, Monterrey JC, Kalinovsky T et al (2009) Distinct patterns of matrix metalloproteinase-2 and -9 expression in normal human cell lines. Oncol Rep 21:821–826

    CAS  PubMed  Google Scholar 

  • Salazar JC, Duhnam-Ems S, La Vake C et al (2009) Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta. PLoS Pathog 5:e1000444

    Article  PubMed  PubMed Central  Google Scholar 

  • Schramm F, Kern A, Barthel C et al (2012) Microarray analyses of inflammation response of human dermal fibroblasts to different strains of Borrelia burgdorferi sensu stricto. PLoS One 7:e40046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanek G, Reiter M (2011) The expanding Lyme Borrelia complex-clinical significance of genomic species? Clin Microbiol Infect 17:487–493

    Article  CAS  PubMed  Google Scholar 

  • Strle K, Shin JJ, Glickstein LJ et al (2012) Association of a toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthr Rheum 64:1497–1507

    Article  CAS  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Guan G, Liu Z et al (2015) RNA-Seq-based analysis of changes in Borrelia burgdorferi gene expression linked to pathogenicity. Parasit Vectors 8:155

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Muc-Wierzgoń.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudek, S., Ziółko, E., Kimsa-Dudek, M. et al. Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes. Arch. Immunol. Ther. Exp. 65, 175–182 (2017). https://doi.org/10.1007/s00005-016-0416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-016-0416-8

Keywords

Navigation