Archivum Immunologiae et Therapiae Experimentalis

, Volume 64, Issue 6, pp 463–483 | Cite as

Transcription Factor NF-κB: An Update on Intervention Strategies

  • Arvind Panday
  • Maria Eugenia Inda
  • Prathyusha Bagam
  • Malaya K. Sahoo
  • Diana Osorio
  • Sanjay BatraEmail author


The nuclear factor (NF)-κB family of transcription factors are ubiquitous and pleiotropic molecules that regulate the expression of more than 150 genes involved in a broad range of processes including inflammation, immunity, cell proliferation, differentiation, and survival. The chronic activation or dysregulation of NF-κB signaling is the central cause of pathogenesis in many disease conditions and, therefore, NF-κB is a major focus of therapeutic intervention. Because of this, understanding the relationship between NF-κB and the induction of various downstream signaling molecules is imperative. In this review, we provide an updated synopsis of the role of NF-κB in DNA repair and in various ailments including cardiovascular diseases, HIV infection, asthma, herpes simplex virus infection, chronic obstructive pulmonary disease, and cancer. Furthermore, we also discuss the specific targets for selective inhibitors and future therapeutic strategies.


NF-κB Asthma COPD HIV HSV Cancer DNA damage 



We would like to thank Tania Hicks, Gagandeep Kaur and Dhirendra P. Singh from Environmental Toxicology PhD Program, Southern University and A&M College, Baton Rouge, Louisiana 70813 for critical reading of the manuscript. This work was supported by Young Clinical Scientist Award from the Flight Attendant Medical Research Institute (FAMRI- 123253_YCSA_Faculty); NIH R15 (7 R15 ES023151 02); Southern University System Foundation Grant (COSC0016) and Louisiana Biomedical Research Network (LBRN) Startup Funds 2P20GM103424-14 (Subaward No. 100011) to SB.


  1. Al-Rasheed NM, Al-Rasheed NM, Bassiouni YA et al (2015) Vitamin D attenuates pro-inflammatory TNF-alpha cytokine expression by inhibiting NF-small ka, CyrillicB/p65 signaling in hypertrophied rat hearts. J Physiol Biochem 71:289–299PubMedCrossRefGoogle Scholar
  2. Ambegaokar SS, Kolson DL (2014) Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 12:174PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson I, Low JS, Weston S et al (2014) Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci USA 111:E1528–E1537PubMedPubMedCentralCrossRefGoogle Scholar
  4. Annunziata CM, Stavnes HT, Kleinberg L et al (2010) Nuclear factor kappaB transcription factors are coexpressed and convey a poor outcome in ovarian cancer. Cancer 116:3276–3284PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balakumar P, Singh M (2006) Anti-tumour necrosis factor-alpha therapy in heart failure: future directions. Basic Clin Pharmacol Toxicol 99:391–397PubMedCrossRefGoogle Scholar
  6. Balch WE, Sznajder JI, Budinger S et al (2014) Misfolded protein structure and proteostasis in lung diseases. Am J Respir Crit Care Med 189:96–103PubMedPubMedCentralGoogle Scholar
  7. Baltimore D (2009) Discovering NF-kappaB. Cold Spring Harb Perspect Biol 1:a000026PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barnes PJ (2015) Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J Allergy Clin Immunol 136:531–545PubMedCrossRefGoogle Scholar
  9. Benezra M, Chevallier N, Morrison DJ et al (2003) BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit. J Biol Chem 278:26333–26341PubMedCrossRefGoogle Scholar
  10. Birrell MA, Hardaker E, Wong S et al (2005) Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am J Respir Crit Care Med 172:962–971PubMedCrossRefGoogle Scholar
  11. Biswas DK, Cruz AP, Gansberger E et al (2000) Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci USA 97:8542–8547PubMedPubMedCentralCrossRefGoogle Scholar
  12. Biswas DK, Shi Q, Baily S et al (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 101:10137–10142PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bonizzi G, Piette J, Schoonbroodt S et al (1999) Reactive oxygen intermediate-dependent NF-kappaB activation by interleukin-1beta requires 5-lipoxygenase or NADPH oxidase activity. Mol Cell Biol 19:1950–1960PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bosnjak L, Miranda-Saksena M, Koelle DM et al (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174:2220–2227PubMedCrossRefGoogle Scholar
  15. Bourdillon MC, Poston RN, Covacho C et al (2000) ICAM-1 deficiency reduces atherosclerotic lesions in double-knockout mice (ApoE(−/−)/ICAM-1(−/−)) fed a fat or a chow diet. Arterioscler Thromb Vasc Biol 20:2630–2635PubMedCrossRefGoogle Scholar
  16. Branen L, Hovgaard L, Nitulescu M et al (2004) Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 24:2137–2142PubMedCrossRefGoogle Scholar
  17. Brar SS, Kennedy TP, Sturrock AB et al (2002) NADPH oxidase promotes NF-kappaB activation and proliferation in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 282:L782–L795PubMedCrossRefGoogle Scholar
  18. Brown LA, Scarola J, Smith AJ et al (2014) The role of tau protein in HIV-associated neurocognitive disorders. Mol Neurodegener 9:40PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brubaker SW, Bonham KS, Zanoni I et al (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290PubMedCrossRefGoogle Scholar
  20. Cai W, Schaffer PA (1992) Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 66:2904–2915PubMedPubMedCentralGoogle Scholar
  21. Cazzola M, Calzetta L, Page C et al (2015) Influence of N-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev 24:451–461PubMedCrossRefGoogle Scholar
  22. Ceconi C, Boraso A, Cargnoni A et al (2003) Oxidative stress in cardiovascular disease: myth or fact? Arch Biochem Biophys 420:217–221PubMedCrossRefGoogle Scholar
  23. Chen W, Li Z, Bai L et al (2011) NF-kappaB in lung cancer, a carcinogenesis mediator and a prevention and therapy target. Front Biosci 16:1172–1185CrossRefGoogle Scholar
  24. Chen YJ, Yeh MH, Yu MC et al (2013) Lapatinib–induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors. Breast Cancer Res 15:R108PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen Y, Wang H, Luo G et al (2014) SIRT4 inhibits cigarette smoke extracts-induced mononuclear cell adhesion to human pulmonary microvascular endothelial cells via regulating NF-κB activity. Toxicol Lett 226:320–327PubMedCrossRefGoogle Scholar
  26. Cherry EM, Lee DW, Jung JU et al (2015) Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer 14:9PubMedPubMedCentralCrossRefGoogle Scholar
  27. Clark RA, Valente AJ (2004) Nuclear factor kappa B activation by NADPH oxidases. Mech Ageing Dev 125:799–810PubMedCrossRefGoogle Scholar
  28. Cogswell PC, Guttridge DC, Funkhouser WK et al (2000) Selective activation of NF-kappa B subunits in human breast cancer: potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene 19:1123–1131PubMedCrossRefGoogle Scholar
  29. Collins RG, Velji R, Guevara NV et al (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191:189–194PubMedPubMedCentralCrossRefGoogle Scholar
  30. Connelly L, Robinson-Benion C, Chont M et al (2007) A transgenic model reveals important roles for the NF-κB alternative pathway (p100/p52) in mammary development and links to tumorigenesis. J Biol Chem 282:10028–10035PubMedCrossRefGoogle Scholar
  31. Courtois G, Whiteside ST, Sibley CH et al (1997) Characterization of a mutant cell line that does not activate NF-kappaB in response to multiple stimuli. Mol Cell Biol 17:1441–1449PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cramer DW, Welch WR (1983) Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst 71:717–721PubMedGoogle Scholar
  33. Cusack JC Jr, Liu R, Houston M et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540PubMedGoogle Scholar
  34. Dahabieh MS, Battivelli E, Verdin E (2015) Understanding HIV latency: the road to an HIV cure. Annu Rev Med 66:407–421PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dahiya S, Liu Y, Nonnemacher MR et al (2014a) CCAAT enhancer binding protein and nuclear factor of activated T cells regulate HIV-1 LTR via a novel conserved downstream site in cells of the monocyte-macrophage lineage. PLoS One 9:e88116PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dahiya S, Liu Y, Williams J et al (2014b) Role of downstream elements in transcriptional regulation of the HIV-1 promoter. J Hum Virol Retrovirol 1:00006Google Scholar
  37. de Winther MP, Kanters E, Kraal G et al (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914PubMedCrossRefGoogle Scholar
  38. Dejardin E, Bonizzi G, Bellahcene A et al (1995) Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B-related proteins in the cytoplasm of human breast cancer cells. Oncogene 11:1835–1841PubMedGoogle Scholar
  39. Delerive P, De Bosscher K, Besnard S et al (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 274:32048–32054PubMedCrossRefGoogle Scholar
  40. Deng J, Lu PD, Zhang Y et al (2004) Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161–10168PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673PubMedCrossRefGoogle Scholar
  42. Di Stefano A, Caramori G, Gnemmi I et al (2009) T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients. Clin Exp Immunol 157:316–324PubMedPubMedCentralCrossRefGoogle Scholar
  43. Doyle KL, Loft S, Morgan EE et al (2013) Prospective memory in HIV-associated neurocognitive disorders (HAND): the neuropsychological dynamics of time monitoring. J Clin Exp Neuropsychol 35:359–372PubMedPubMedCentralCrossRefGoogle Scholar
  44. Edwards MR, Bartlett NW, Clarke D et al (2009) Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 121:1–13PubMedCrossRefGoogle Scholar
  45. Egan KP, Wu S, Wigdahl B et al (2013) Immunological control of herpes simplex virus infections. J Neurovirol 19:328–345PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gangwani MR, Noel RJ Jr, Shah A et al (2013) Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCL5 expression in astrocytes via PI3 K and MAPK signaling pathways. J Neuroinflammation 10:136PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684PubMedCrossRefGoogle Scholar
  48. Gilowska I (2014) CXCL8 (interleukin 8)—the key inflammatory mediator in chronic obstructive pulmonary disease? Postepy Hig Med Dosw (Online) 68:842–850CrossRefGoogle Scholar
  49. Goodkin ML, Ting AT, Blaho JA (2003) NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol 77:7261–7280PubMedPubMedCentralCrossRefGoogle Scholar
  50. Grilli M, Memo M (1999) Possible role of NF-kappaB and p53 in the glutamate-induced pro-apoptotic neuronal pathway. Cell Death Differ 6:22–27PubMedCrossRefGoogle Scholar
  51. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guo F, Li J, Du W et al (2013) mTOR regulates DNA damage response through NF-kappaB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27:2040–2046PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guo H, Gao J, Taxman DJ et al (2014) HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 289:21716–21726PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gupta A, Grove A (2014) Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis. Biochemistry 53:4368–4380PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hada M, Mizutari K (2004) A case of advanced pancreatic cancer with remarkable response to thalidomide, celecoxib and gemcitabine. Cancer Chemother 31:959–961Google Scholar
  56. Hadigal SR, Agelidis AM, Karasneh GA et al (2015) Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun 6:6985PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hargett D, Rice S, Bachenheimer SL (2006) Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol 80:10565–10578PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224PubMedCrossRefGoogle Scholar
  59. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  60. Heaton RK, Franklin DR, Ellis RJ et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16PubMedCrossRefGoogle Scholar
  61. Heinemann V, Wilke H, Mergenthaler HG et al (2000) Gemcitabine and cisplatin in the treatment of advanced or metastatic pancreatic cancer. Ann Oncol 11:1399–1403PubMedCrossRefGoogle Scholar
  62. Hernandez-Gutierrez S, Garcia-Pelaez I, Zentella-Dehesa A et al (2006) NF-kappaB signaling blockade by Bay 11-7085 during early cardiac morphogenesis induces alterations of the outflow tract in chicken heart. Apoptosis 11:1101–1109PubMedCrossRefGoogle Scholar
  63. Hoffmann A, Baltimore D (2006) Circuitry of nuclear factor kappaB signaling. Immunol Rev 210:171–186PubMedCrossRefGoogle Scholar
  64. Hollander W (1976) Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol 38:786–800PubMedCrossRefGoogle Scholar
  65. Hung PY, Ho BC, Lee SY et al (2015) Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 10:e0115475PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hutchinson KR, Stewart JA Jr, Lucchesi PA (2010) Extracellular matrix remodeling during the progression of volume overload-induced heart failure. J Mol Cell Cardiol 48:564–569PubMedCrossRefGoogle Scholar
  67. Israel A (2010) The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol 2:a000158PubMedPubMedCentralCrossRefGoogle Scholar
  68. Ito K, Yamamura S, Essilfie-Quaye S et al (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 203:7–13PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jansen F, Yang X, Nickenig G et al (2015) Role, function and therapeutic potential of microRNAs in vascular aging. Curr Vasc Pharmacol 13:324–330PubMedCrossRefGoogle Scholar
  70. Janssen-Heininger YM, Poynter ME, Aesif SW et al (2009) Nuclear factor kappaB, airway epithelium, and asthma: avenues for redox control. Proc Am Thorac Soc 6:249–255PubMedPubMedCentralCrossRefGoogle Scholar
  71. Janssens S, Tschopp J (2006) Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13:773–784PubMedCrossRefGoogle Scholar
  72. Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96PubMedCrossRefGoogle Scholar
  73. Jimeno A, Amador ML, Kulesza P et al (2006) Assessment of celecoxib pharmacodynamics in pancreatic cancer. Mol Cancer Ther 5:3240–3247PubMedCrossRefGoogle Scholar
  74. Joyce D, Albanese C, Steer J et al (2001) NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 12:73–90PubMedCrossRefGoogle Scholar
  75. Kang JH, Hwang SM, Chung IY (2015) S100A8, S100A9 and S100A12 activate airway epithelial cells to produce MUC5AC via extracellular signal-regulated kinase and nuclear factor-κB pathways. Immunology 144:79–90PubMedCrossRefGoogle Scholar
  76. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar
  77. Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141PubMedPubMedCentralCrossRefGoogle Scholar
  78. Karn J, Stoltzfus CM (2012) Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2:a006916PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kedzierska K, Crowe SM (2001) Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother 12:133–150PubMedCrossRefGoogle Scholar
  80. Kniss DA, Rovin B, Fertel RH et al (2001) Blockade NF-kappaB activation prohibits TNF-alpha-induced cyclooxygenase-2 gene expression in ED27 trophoblast-like cells. Placenta 22:80–89PubMedCrossRefGoogle Scholar
  81. Kumar S, Mabalirajan U, Rehman R et al (2013) A novel cinnamate derivative attenuates asthma features and reduces bronchial epithelial injury in mouse model. Int Immunopharmacol 15:150–159PubMedCrossRefGoogle Scholar
  82. Lassegue B, San Martin A, Griendling KK (2012) Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 110:1364–1390PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lemmers B, Salmena L, Bidere N et al (2007) Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J Biol Chem 282:7416–7423PubMedCrossRefGoogle Scholar
  85. Leoni V, Gianni T, Salvioli S et al (2012) Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-κB. J Virol 86:6555–6562PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedCrossRefGoogle Scholar
  87. Li J, Zhao F (2015) Anti-inflammatory functions of Thunb. and its compounds: a perspective on its potential role in rheumatoid arthritis. Exp Ther Med 10:3–6PubMedPubMedCentralGoogle Scholar
  88. Li YY, Feng YQ, Kadokami T et al (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci USA 97:12746–12751PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li D, Xie K, Wolff R et al (2004) Pancreatic cancer. Lancet 363:1049–1057PubMedCrossRefGoogle Scholar
  90. Li J, Luo L, Wang X et al (2009) Inhibition of NF-kappaB expression and allergen-induced airway inflammation in a mouse allergic asthma model by andrographolide. Cell Mol Immunol 6:381–385PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu H, Chen K, Feng W et al (2013) TLR4-MyD88/Mal-NF-κB axis is involved in infection of HSV-2 in human cervical epithelial cells. PLoS One 8:e80327PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lo M, Ling V, Low C et al (2010) Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol 17:9PubMedPubMedCentralGoogle Scholar
  93. Loehrer PJ, Feng Y, Cardenes H et al (2011) Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol 29:4105–4112PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lu Z, Li Y, Takwi A et al (2011) miR-301a as an NF-kappaB activator in pancreatic cancer cells. EMBO J 30:57–67PubMedCrossRefGoogle Scholar
  95. Lu M, Tang F, Zhang J et al (2015) Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-kappaB signaling pathway. Phytother Res 29:599–606PubMedCrossRefGoogle Scholar
  96. Luo JL, Maeda S, Hsu LC et al (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305PubMedCrossRefGoogle Scholar
  97. Ma X, Becker Buscaglia LE, Barker JR et al (2011) MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3:159–166PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mabb AM, Wuerzberger-Davis SM, Miyamoto S (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol 8:986–993PubMedCrossRefGoogle Scholar
  99. Madrigal-Matute J, Rotllan N, Aranda JF et al (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15:322PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mammen MJ, Sethi S (2012) Macrolide therapy for the prevention of acute exacerbations in chronic obstructive pulmonary disease. Pol Arch Med Wewn 122:54–59PubMedGoogle Scholar
  101. Mandai M, Yamaguchi K, Matsumura N et al (2009) Ovarian cancer in endometriosis: molecular biology, pathology, and clinical management. Int J Clin Oncol 14:383–391PubMedCrossRefGoogle Scholar
  102. Marcelletti JF (2002) Synergistic inhibition of herpesvirus replication by docosanol and antiviral nucleoside analogs. Antiviral Res 56:153–166PubMedCrossRefGoogle Scholar
  103. McArthur JC, Brew BJ (2010) HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS 24:1367–1370PubMedCrossRefGoogle Scholar
  104. McCool KW, Miyamoto S (2012) DNA damage-dependent NF-kappaB activation: NEMO turns nuclear signaling inside out. Immunol Rev 246:311–326PubMedPubMedCentralCrossRefGoogle Scholar
  105. Meng Y, Yu CH, Li T et al (2013) Expression and significance of Toll-like receptor-4 in rats lung established by passive smoking or associated with intratracheal instillation of lipopolysaccharide. Zhonghua Yi Xue Za Zhi 93:2230–2234PubMedGoogle Scholar
  106. Min T, Bodas M, Mazur S et al (2011) Critical role of proteostasis-imbalance in pathogenesis of COPD and severe emphysema. J Mol Med 89:577–593PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mitsiades CS, McMillin D, Kotoula V et al (2006) Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J Clin Endocrinol Metab 91:4013–4021PubMedCrossRefGoogle Scholar
  108. Mogensen TH, Paludan SR (2001) Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65:131–150PubMedPubMedCentralCrossRefGoogle Scholar
  109. Moutzouris JP, Che W, Ramsay EE et al (2010) Proteasomal inhibition upregulates the endogenous MAPK deactivator MKP-1 in human airway smooth muscle: mechanism of action and effect on cytokine secretion. Biochim Biophys Acta 1803:416–423PubMedCrossRefGoogle Scholar
  110. Mutlu GM, Budinger GR, Wu M et al (2012) Proteasomal inhibition after injury prevents fibrosis by modulating TGF-β1 signalling. Thorax 67:139–146PubMedCrossRefGoogle Scholar
  111. Nakashima Y, Raines EW, Plump AS et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851PubMedCrossRefGoogle Scholar
  112. Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6:945–951PubMedCrossRefGoogle Scholar
  113. Namba H, Saenko V, Yamashita S (2007) Nuclear factor-κB in thyroid carcinogenesis and progression: a novel therapeutic target for advanced thyroid cancer. Arq Bras Endocrinol Metab 51:843–851CrossRefGoogle Scholar
  114. Nelson G, Wilde GJ, Spiller DG et al (2003) NF-kappaB signalling is inhibited by glucocorticoid receptor and STAT6 via distinct mechanisms. J Cell Sci 116(Pt 12):2495–2503PubMedCrossRefGoogle Scholar
  115. Nishina T, Yamaguchi N, Gohda J et al (2009) NIK is involved in constitutive activation of the alternative NF-κB pathway and proliferation of pancreatic cancer cells. Biochem Biophys Res Commun 388:96–101PubMedCrossRefGoogle Scholar
  116. Nitecki SS, Sarr MG, Colby TV et al (1995) Long-term survival after resection for ductal adenocarcinoma of the pancreas. Is it really improving? Ann Surg 221:59PubMedPubMedCentralCrossRefGoogle Scholar
  117. Niu J, Wang K, Graham S et al (2011) MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-small ka, CyrillicB activation via inhibition of Ismall ka, Cyrillic B kinase activation. J Mol Cell Cardiol 51:177–186PubMedCrossRefGoogle Scholar
  118. Omur O, Baran Y (2014) An update on molecular biology of thyroid cancers. Crit Rev Oncol Hematol 90:233–252PubMedCrossRefGoogle Scholar
  119. Osorio FG, Lopez-Otin C, Freije JM (2012) NF-κB in premature aging. Aging 4:726–727PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pacifico F, Mauro C, Barone C et al (2004) Oncogenic and anti-apoptotic activity of NF-κB in human thyroid carcinomas. J Biol Chem 279:54610–54619PubMedCrossRefGoogle Scholar
  121. Palona I, Namba H, Mitsutake N et al (2006) BRAFV600E promotes invasiveness of thyroid cancer cells through nuclear factor κB activation. Endocrinology 147:5699–5707PubMedCrossRefGoogle Scholar
  122. Panday A, Grove A (2016) The high mobility group protein HMO1 functions as a linker histone in yeast. Epigenetics Chromatin 9:13PubMedPubMedCentralCrossRefGoogle Scholar
  123. Panday A, Sahoo MK, Osorio D et al (2015a) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5–23PubMedCrossRefGoogle Scholar
  124. Panday A, Xiao L, Grove A (2015b) Yeast high mobility group protein HMO1 stabilizes chromatin and is evicted during repair of DNA double strand breaks. Nucleic Acids Res 43:5759–5770PubMedPubMedCentralCrossRefGoogle Scholar
  125. Parker SL, Tong T, Bolden S et al (1997) Cancer statistics, 1997. CA Cancer J Clin 47:5–27PubMedCrossRefGoogle Scholar
  126. Pavese JM, Farmer RL, Bergan RC (2010) Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 29:465–482PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pierce JW, Read MA, Ding H et al (1996) Salicylates inhibit I kappa B-alpha phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J Immunol 156:3961–3969PubMedGoogle Scholar
  128. Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 55:459–472PubMedCrossRefGoogle Scholar
  129. Rastrick J, Stevenson CS, Eltom S et al (2013) Cigarette smoke induced airway inflammation is independent of NF-κB signalling. PLoS One 8:e54128PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rico-Rosillo G, Vega-Robledo GB (2011) The involvement of NF-?B Transcription factor in asthma. Rev Alerg Mex 58:107–111PubMedGoogle Scholar
  131. Rooney JW, Emery DW, Sibley CH (1990) 1.3E2, a variant of the B lymphoma 70Z/3, defective in activation of NF-kappa B and OTF-2. Immunogenetics 31:73–78PubMedCrossRefGoogle Scholar
  132. Roth M, Black JL (2006) Transcription factors in asthma: are transcription factors a new target for asthma therapy? Curr Drug Targets 7:589–595PubMedCrossRefGoogle Scholar
  133. Sanguinetti CM (2015) N-acetylcysteine in COPD: why, how, and when? Multidiscip Respir Med 11:8PubMedCrossRefGoogle Scholar
  134. Sethi G, Ahn K, Chaturvedi M et al (2007) Epidermal growth factor (EGF) activates nuclear factor-κB through IκBα kinase-independent but EGF receptor-kinase dependent tyrosine 42 phosphorylation of IκBα. Oncogene 26:7324–7332PubMedCrossRefGoogle Scholar
  135. Setia S, Nehru B, Sanyal SN (2014) Activation of NF-κB: bridging the gap between inflammation and cancer in colitis-mediated colon carcinogenesis. Biomed Pharmacother 68:119–128PubMedCrossRefGoogle Scholar
  136. Shah A, Kumar A (2010) HIV-1 gp120-mediated increases in IL-8 production in astrocytes are mediated through the NF-kappaB pathway and can be silenced by gp120-specific siRNA. J Neuroinflamm 7:96CrossRefGoogle Scholar
  137. Shah A, Verma AS, Patel KH et al (2011) HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One 6:e21261PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sharma A, Menche J, Huang C et al (2015) A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes. Hum Mol Genet 24:3005–3020PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shimizu K, Konno S, Ozaki M et al (2012) Dehydroxymethylepoxyquinomicin (DHMEQ), a novel NF-kappaB inhibitor, inhibits allergic inflammation and airway remodelling in murine models of asthma. Clin Exp Allergy 42:1273–1281PubMedCrossRefGoogle Scholar
  140. Shostak K, Chariot KS (2011) NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 13:214PubMedPubMedCentralCrossRefGoogle Scholar
  141. Spudich S, González-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harbor Perspect Med 2:a007120CrossRefGoogle Scholar
  142. Staal J, Bekaert T, Beyaert R (2011) Regulation of NF-kappaB signaling by caspases and MALT1 paracaspase. Cell Res 21:40–54PubMedCrossRefGoogle Scholar
  143. Stilmann M, Hinz M, Arslan SC et al (2009) A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 36:365–378PubMedCrossRefGoogle Scholar
  144. Tabruyn SP, Griffioen AW (2007) A new role for NF-[kappa]B in angiogenesis inhibition. Cell Death Differ 14:1393–1397PubMedCrossRefGoogle Scholar
  145. Taddeo B, Zhang W, Lakeman F et al (2004) Cells lacking NF-kappaB or in which NF-kappaB is not activated vary with respect to ability to sustain herpes simplex virus 1 replication and are not susceptible to apoptosis induced by a replication-incompetent mutant virus. J Virol 78:11615–11621PubMedPubMedCentralCrossRefGoogle Scholar
  146. Takahashi H, Ogata H, Nishigaki R et al (2010) Tobacco smoke promotes lung tumorigenesis by triggering IKKβ-and JNK1-dependent inflammation. Cancer Cell 17:89–97PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tiwari V, Tarbutton MS, Shukla D (2015) Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 20:2707–2727PubMedCrossRefGoogle Scholar
  148. Tornatore L, Sandomenico A, Raimondo D et al (2014) Cancer-selective targeting of the NF-kappaB survival pathway with GADD45beta/MKK7 inhibitors. Cancer Cell 26:495–508PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tsukuda T, Fleming AB, Nickoloff JA et al (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438:379–383PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRefGoogle Scholar
  151. Vij N (2008) AAA ATPase p97/VCP: cellular functions, disease and therapeutic potential. J Cell Mol Med 12:2511–2518PubMedPubMedCentralCrossRefGoogle Scholar
  152. Visconti R, Cerutti J, Battista S et al (1997) Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkB p65 protein expression. Oncogene 15:1987–1994PubMedCrossRefGoogle Scholar
  153. Volcic M, Karl S, Baumann B et al (2012) NF-kappaB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res 40:181–195PubMedCrossRefGoogle Scholar
  154. Wahid F, Shehzad A, Khan T et al (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803:1231–1243PubMedCrossRefGoogle Scholar
  155. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes&quest. Acta Pharmacol Sinica 29:1275–1288CrossRefGoogle Scholar
  156. Wang C-Y, Mayo MW, Baldwin AS (1996) TNF-and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787PubMedCrossRefGoogle Scholar
  157. Wang W, Abbruzzese JL, Evans DB et al (1999) The nuclear factor-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5:119–127PubMedGoogle Scholar
  158. Wang H, Cao Q, Dudek AZ (2012) Phase II study of panobinostat and bortezomib in patients with pancreatic cancer progressing on gemcitabine-based therapy. Anticancer Res 32:1027–1031PubMedGoogle Scholar
  159. Weng D, Marty-Roix R, Ganesan S et al (2014) Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci 111:7391–7396PubMedPubMedCentralCrossRefGoogle Scholar
  160. Wharry CE, Haines KM, Carroll RG et al (2009) Constitutive noncanonical NFκB signaling in pancreatic cancer cells. Cancer Biol Ther 8:1567–1576PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wilson SJ, Wallin A, Della-Cioppa G et al (2001) Effects of budesonide and formoterol on NF-kappaB, adhesion molecules, and cytokines in asthma. Am J Respir Crit Care Med 164:1047–1052PubMedCrossRefGoogle Scholar
  162. Wong WS, Leong KP (2004) Tyrosine kinase inhibitors: a new approach for asthma. Biochim Biophys Acta 1697:53–69PubMedCrossRefGoogle Scholar
  163. Wong K, Jacks T, Dranoff G (2010) NF-kappaB fans the flames of lung carcinogenesis. Cancer Prev Res 3:403–405CrossRefGoogle Scholar
  164. Wutzler P (1997) Antiviral therapy of herpes simplex and varicella-zoster virus infections. Intervirology 40:343–356PubMedCrossRefGoogle Scholar
  165. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yamaoka S, Courtois G, Bessia C et al (1998) Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93:1231–1240PubMedCrossRefGoogle Scholar
  167. Yang G, Xiao X, Rosen DG et al (2011) The biphasic role of NF-κB in progression and chemoresistance of ovarian cancer. Clin Cancer Res 17:2181–2194PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80PubMedCrossRefGoogle Scholar
  169. Zelarayan L, Renger A, Noack C et al (2009) NF-κB activation is required for adaptive cardiac hypertrophy. Cardiovasc Res 84:416–424PubMedCrossRefGoogle Scholar
  170. Zhang JQ, Zhang JQ, Fang LZ et al (2015) Effect of oral N-acetylcysteine on COPD patients with microsatellite polymorphism in the heme oxygenase-1 gene promoter. Drug Des Devel Ther 9:6379–6387PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhong H, May MJ, Jimi E et al (2002) The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 9:625–636PubMedCrossRefGoogle Scholar
  172. Zhong M, Zheng K, Chen M et al (2014) Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin. PLoS One 9:e99425PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2016

Authors and Affiliations

  • Arvind Panday
    • 1
    • 2
  • Maria Eugenia Inda
    • 3
  • Prathyusha Bagam
    • 4
  • Malaya K. Sahoo
    • 5
  • Diana Osorio
    • 1
  • Sanjay Batra
    • 1
    • 4
    Email author
  1. 1.Department of Pathobiological Sciences, School of Veterinary MedicineLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  3. 3.Departamento de Microbiología, CONICET, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional RosarioSanta FeArgentina
  4. 4.Laboratory of Pulmonary Immunotoxicology, Environmental Toxicology PhD Program, 207 Health Research CenterSouthern University and A&M CollegeBaton RougeUSA
  5. 5.Department of PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations