From the Deep Sea to Everywhere: Environmental Antigens for iNKT Cells

  • Gerhard WingenderEmail author


Invariant natural killer T (iNKT) cells are a unique subset of innate T cells that share features with innate NK cells and adaptive memory T cells. The first iNKT cell antigen described was found 1993 in a marine sponge and it took over 10 years for other, bacterial antigens to be described. Given the paucity of known bacterial iNKT cell antigens, it appeared as if iNKT cells play a very specialist role in the protection against few, rare and unusual pathogenic bacteria. However, in the last few years several publications painted a very different picture, suggesting that antigens for iNKT cells are found almost ubiquitous in the environment. These environmental iNKT cell antigens can shape the distribution, phenotype and function of iNKT cells. Here, these recent findings will be reviewed and their implications for the field will be outlined.


Innate T cells Invariant natural killer T (iNKT) cells Environmental antigens Mucosal immunology 





Eosinophilic esophagitis


House dust extract


Major histocompatibility complex


T cell receptor


T helper type


Invariant Vα14–Jα18 TCR rearrangement


Invariant Vα24–Jα18 TCR rearrangement



The author would like to thank Drs. Duygu Sag and Alysia M. Birkholz for critical reading of the manuscript.


  1. Agea E, Russano A, Bistoni O et al (2005) Human CD1-restricted T cell recognition of lipids from pollens. J Exp Med 202:295–308CrossRefPubMedPubMedCentralGoogle Scholar
  2. Albacker LA, Chaudhary V, Chang Y-J et al (2013) Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat Med 19:1297–1304CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amprey JL, Im JS, Turco SJ et al (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200:895–904CrossRefPubMedPubMedCentralGoogle Scholar
  4. An D, Oh SF, Olszak T et al (2014) Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer t cells. Cell 156:123–133CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336CrossRefPubMedGoogle Scholar
  6. Ben-Menachem G, Kubler-Kielb J, Coxon B et al (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci USA 100:7913–7918CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berzins SP, Ritchie DS (2014) Natural killer T cells: drivers or passengers in preventing human disease? Nat Rev Immunol 14:640–646CrossRefPubMedGoogle Scholar
  8. Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev 13:101–117Google Scholar
  9. Brennan PJ, Tatituri RVV, Heiss C et al (2014) Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction. Proc Natl Acad Sci USA 111:13433–13438CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brossay L, Kronenberg M (1999) Highly conserved antigen-presenting function of CD1d molecules. Immunogenetics 50:146–151CrossRefPubMedGoogle Scholar
  11. Brossay L, Chioda M, Burdin N et al (1998) CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med 188:1521–1528CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chan AC, Leeansyah E, Cochrane A et al (2013) Ex-vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(−) subsets. Clin Exp Immunol 172:129–137CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chang P-P, Barral P, Fitch J et al (2011a) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat Immunol 13:35–43CrossRefPubMedGoogle Scholar
  14. Chang Y-J, Kim HY, Albacker LA et al (2011b) Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Invest 121:57–69CrossRefPubMedGoogle Scholar
  15. D’Andrea A, Goux D, De Lalla C et al (2000) Neonatal invariant Valpha24 + NKT lymphocytes are activated memory cells. Eur J Immunol 30:1544–1550CrossRefPubMedGoogle Scholar
  16. de Lalla C, Festuccia N, Albrecht I et al (2008) Innate-like effector differentiation of human invariant NKT cells driven by IL-7. J Immunol 180:4415–4424CrossRefPubMedGoogle Scholar
  17. DeKruyff RH, Yu S, Kim HY et al (2014) Innate immunity in the lung regulates the development of asthma. Immunol Rev 260:235–248CrossRefPubMedGoogle Scholar
  18. Dumler JS (2005) Anaplasma and Ehrlichia infection. Ann N Y Acad Sci 1063:361–373CrossRefPubMedGoogle Scholar
  19. Dutt P, Shukla JS, Ventateshaiah SU et al (2015) Allergen-induced interleukin-18 promotes experimental eosinophilic oesophagitis in mice. Immunol Cell Biol 93:849–857CrossRefPubMedPubMedCentralGoogle Scholar
  20. Eger KA, Sundrud MS, Motsinger AA et al (2006) Human natural killer T cells are heterogeneous in their capacity to reprogram their effector functions. PLoS One 1:e50CrossRefPubMedPubMedCentralGoogle Scholar
  21. Engel I, Kronenberg M (2012) Making memory at birth: understanding the differentiation of natural killer T cells. Curr Opin Immunol 24:184–190CrossRefPubMedPubMedCentralGoogle Scholar
  22. Exley MA, Hou R, Shaulov A et al (2008) Selective activation, expansion, and monitoring of human iNKT cells with a monoclonal antibody specific for the TCR α-chain CDR3 loop. Eur J Immunol 38:1756–1766CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fujii S, Shimizu K, Okamoto Y et al (2013) NKT cells as an ideal anti-tumor immunotherapeutic. Front Immunol 4:409CrossRefPubMedPubMedCentralGoogle Scholar
  24. Girardi E, Yu ED, Li Y et al (2011) Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells. PLoS Biol 9:e1001189CrossRefPubMedPubMedCentralGoogle Scholar
  25. Godfrey DI, Pellicci DG, Rossjohn J (2013) NKT cells: the smoking gun in fungal-induced asthma? Nat Med 19:1210–1211CrossRefPubMedGoogle Scholar
  26. Hagihara M, Gansuvd B, Ueda Y et al (2002) Killing activity of human umbilical cord blood-derived TCRValpha24(+) NKT cells against normal and malignant hematological cells in vitro: a comparative study with NK cells or OKT3 activated T lymphocytes or with adult peripheral blood NKT cells. Cancer Immunol Immunother 51:1–8CrossRefPubMedGoogle Scholar
  27. Harner S, Noessner E, Nadas K et al (2011) Cord blood Valpha24-vbeta11 natural killer T cells display a Th2-chemokine receptor profile and cytokine responses. PLoS One 6:e15714CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heller F, Fuss IJ, Nieuwenhuis EE et al (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638CrossRefPubMedGoogle Scholar
  29. Hirai Y, Haque M, Yoshida T et al (1995) Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol 177:5327–5333PubMedPubMedCentralGoogle Scholar
  30. Horner AA (2010) Regulation of aeroallergen immunity by the innate immune system: laboratory evidence for a new paradigm. J Innate Immun 2:107–113CrossRefPubMedGoogle Scholar
  31. Hsueh PR, Teng LJ, Yang PC et al (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26:676–681CrossRefPubMedGoogle Scholar
  32. Huang YJ, Nelson CE, Brodie EL et al (2011) Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 127(372–381):e1–e3Google Scholar
  33. Ito Y, Vela JL, Matsumura F et al (2013) Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS One 8:e78191CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ivanov II, Atarashi K, Manel N et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jiang J, Karimi O, Ouburg S et al (2012) Interruption of CXCL13-CXCR5 axis increases upper genital tract pathology and activation of NKT cells following Chlamydial genital infection. PLoS One 7:e47487CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jyonouchi S, Abraham V, Orange JS et al (2011) Invariant natural killer T cells from children with versus without food allergy exhibit differential responsiveness to milk-derived sphingomyelin. J Allergy Clin Immunol 128(102–109):e13PubMedGoogle Scholar
  37. Jyonouchi S, Smith CL, Saretta F et al (2014) Invariant natural killer T cells in children with eosinophilic esophagitis. Clin Exp Allergy 44:58–68CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kain L, Webb B, Anderson BL et al (2014) The Identification of the endogenous ligands of natural killer t cells reveals the presence of mammalian a-linked glycosylceramides. Immunity 41:543–554CrossRefPubMedPubMedCentralGoogle Scholar
  39. Karmakar S, Paul J, De T (2011) Leishmania donovani glycosphingolipid facilitates antigen presentation by inducing relocation of CD1d into lipid rafts in infected macrophages. Eur J Immunol 41:1376–1387CrossRefPubMedGoogle Scholar
  40. Kawakami K, Yamamoto N, Kinjo Y et al (2003) Critical role of Valpha14 + natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322–3330CrossRefPubMedGoogle Scholar
  41. Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629CrossRefPubMedGoogle Scholar
  42. Kenyon CR, Osbak K (2014) Recent progress in understanding the epidemiology of bacterial vaginosis. Curr Opin Obstet Gynecol 26:448–454CrossRefPubMedGoogle Scholar
  43. King IL, Fortier A, Tighe M et al (2011) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 13:44–50CrossRefPubMedGoogle Scholar
  44. Kinjo Y, Kronenberg M (2009) Detection of microbes by natural killer T cells. In: Schoenberger et al (eds) Crossroads between innate and adaptive immunity II. Springer, New York, pp 17–26Google Scholar
  45. Kinjo Y, Wu D, Kim G et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525CrossRefPubMedGoogle Scholar
  46. Kinjo Y, Tupin E, Wu D et al (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7:978–986CrossRefPubMedGoogle Scholar
  47. Kinjo Y, Illarionov P, Vela JL et al (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12:966–974CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kronenberg M (2005) Towards an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900CrossRefPubMedGoogle Scholar
  49. Laskin AI, White DC (1999) Preface to special issue on Sphingomonas. J Ind Microbiol Biotechnol 23:231CrossRefPubMedGoogle Scholar
  50. Lexmond WS, Neves JF, Nurko S et al (2014) Involvement of the iNKT cell pathway is associated with early-onset eosinophilic esophagitis and response to allergen avoidance therapy. Am J Gastroenterol 109:646–657CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liang S, Webb T, Li Z (2014) Probiotic antigens stimulate hepatic natural killer T cells. Immunology 141:203–210CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lin D, Koskella B (2015) Friend and foe: factors influencing the movement of the bacterium Helicobacter pylori along the parasitism-mutualism continuum. Evol Appl 8:9–22CrossRefPubMedGoogle Scholar
  53. Loh L, Ivarsson MA, Michaelsson J et al (2014) Invariant natural killer T cells developing in the human fetus accumulate and mature in the small intestine. Mucosal Immunol 7:1233–1243CrossRefPubMedGoogle Scholar
  54. Lotter H, Gonzalez-Roldan N, Lindner B et al (2009) Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess. PLoS Pathog 5:e1000434CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lynch L, Michelet X, Zhang S et al (2015) Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat Immunol 16:85–95CrossRefPubMedGoogle Scholar
  56. Matsuda JL, Gapin L, Baron JL et al (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100:8395–8400CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mattner J, Debord KL, Ismail N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529CrossRefPubMedGoogle Scholar
  58. Mattner J, Savage PB, Leung P et al (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3:304–315CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mazmanian SK, Kasper DL (2006) The love–hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858CrossRefPubMedGoogle Scholar
  60. Mirotti L, Florsheim E, Rundqvist L et al (2013) Lipids are required for the development of Brazil nut allergy: the role of mouse and human iNKT cells. Allergy 68:74–83CrossRefPubMedGoogle Scholar
  61. Montoya CJ, Pollard D, Martinson J et al (2007) Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 122:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  62. Morita M, Motoki K, Akimoto K et al (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38:2176–2187CrossRefPubMedGoogle Scholar
  63. Mshvildadze M, Neu J, Shuster J et al (2010) Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr 156:20–25CrossRefPubMedPubMedCentralGoogle Scholar
  64. Neef A, Witzenberger R, Kampfer P (1999) Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23:261–267CrossRefPubMedGoogle Scholar
  65. Nieuwenhuis EE, Matsumoto T, Lindenbergh D et al (2009) Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J Clin Invest 119:1241–1250CrossRefPubMedPubMedCentralGoogle Scholar
  66. O’Konek JJ, Berzofsky JA, Terabe M (2012) Immune regulation of tumor immunity by NKT cells. In: Terabe M, Berzofsky JA (eds) Natural killer T cells. Springer, New York, pp 55–70CrossRefGoogle Scholar
  67. Olafsson S, Gudjonsson H, Selmi C et al (2004) Antimitochondrial antibodies and reactivity to N. aromaticivorans proteins in icelandic patients with primary biliary cirrhosis and their relatives. Am J Gastroenterol 99:2143–2146CrossRefPubMedGoogle Scholar
  68. Olson CMJ, Bates TC, Izadi H et al (2009) Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis. J Immunol 182:3728–3734CrossRefPubMedPubMedCentralGoogle Scholar
  69. Olszak T, An D, Zeissig S et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–493CrossRefPubMedPubMedCentralGoogle Scholar
  70. Peng Y, Zhao L, Shekhar S et al (2012) The glycolipid exoantigen derived from Chlamydia muridarum activates invariant natural killer T cells. Cell Mol Immunol 9:361–366CrossRefPubMedPubMedCentralGoogle Scholar
  71. Perola O, Nousiainen T, Suomalainen S et al (2002) Recurrent Sphingomonas paucimobilis -bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients. J Hosp Infect 50:196–201CrossRefPubMedGoogle Scholar
  72. Rajavelu P, Rayapudi M, Moffitt M et al (2012) Significance of para-esophageal lymph nodes in food or aeroallergen-induced iNKT cell-mediated experimental eosinophilic esophagitis. Am J Physiol Gastrointest Liver Physiol 302:G645–G654CrossRefPubMedGoogle Scholar
  73. Rautava S, Collado MC, Salminen S et al (2012) Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology 102:178–184CrossRefPubMedGoogle Scholar
  74. Rayapudi M, Rajavelu P, Zhu X et al (2014) Invariant natural killer T-cell neutralization is a possible novel therapy for human eosinophilic esophagitis. Clin Transl Immunol 3:e9CrossRefGoogle Scholar
  75. Rossjohn J, Pellicci DG, Patel O et al (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev 12:845–857Google Scholar
  76. Sag D, Krause P, Hedrick CC et al (2014) IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 124:3725–3740CrossRefPubMedPubMedCentralGoogle Scholar
  77. Salio M, Silk JD, Yvonne Jones E et al (2014) Biology of CD1- and MR1-restricted T cells. Annu Rev Immunol 32:323–366CrossRefPubMedGoogle Scholar
  78. Satokari R, Grönroos T, Laitinen K et al (2009) Bifidobacteriumand lactobacillusDNA in the human placenta. Lett Appl Microbiol 48:8–12CrossRefPubMedGoogle Scholar
  79. Selmi C, Balkwill DL, Invernizzi P et al (2003) Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 38:1250–1257CrossRefPubMedGoogle Scholar
  80. Simoni Y, Diana J, Ghazarian L et al (2013) Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 171:8–19CrossRefPubMedPubMedCentralGoogle Scholar
  81. Singh AK, Gaur P, Das SN (2014) Natural killer T cell anergy, co-stimulatory molecules and immunotherapeutic interventions. Hum Immunol 75:250–260CrossRefPubMedGoogle Scholar
  82. Sriram V, Du W, Gervay-Hague J et al (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701CrossRefPubMedGoogle Scholar
  83. Stetson DB, Mohrs M, Reinhardt RL et al (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J Exp Med 198:1069–1076CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thomas SY, Scanlon ST, Griewank KG et al (2011) PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J Exp Med 208:1179–1188CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tonti E, Fedeli M, Napolitano A et al (2012) Follicular helper NKT cells induce limited B cell responses and germinal center formation in the absence of CD4+ T cell help. J Immunol 188:3217–3222CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tupin E, Benhnia MR, Kinjo Y et al (2008) NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc Natl Acad Sci USA 105:19863–19868CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ueda Y, Hagihara M, Gansuvd B et al (2003) The effects of alphaGalCer-induced TCRValpha24 Vbeta11(+) natural killer T cells on NK cell cytotoxicity in umbilical cord blood. Cancer Immunol Immunother 52:625–631CrossRefPubMedGoogle Scholar
  88. van der Vliet HJ, Nishi N, de Gruijl TD et al (2000) Human natural killer T cells acquire a memory-activated phenotype before birth. Blood 95:2440–2442Google Scholar
  89. Wechsler JB, Bryce PJ (2014) Allergic mechanisms in eosinophilic esophagitis. Gastroenterol Clin North Am 43:281–296CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wei B, Wingender G, Fujiwara D et al (2010) Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 184:1218–1226CrossRefPubMedPubMedCentralGoogle Scholar
  91. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306CrossRefPubMedGoogle Scholar
  92. Wieland Brown LC, Penaranda C, Kashyap PC et al (2013) Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol 11:e1001610CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wingender G, Kronenberg M (2008) Role of NKT cells in the digestive system. IV. The role of canonical natural killer T cells in mucosal immunity and inflammation. Am J Physiol Gastrointest Liver Physiol 294:G1–G8CrossRefPubMedGoogle Scholar
  94. Wingender G, Kronenberg M (2014) The role of invariant natural killer T Cells in autoimmune diseases. In: Rose NR, Mackay IR (eds) The autoimmune diseases. Fifth Edition. Elsevier, pp 103–129Google Scholar
  95. Wingender G, Krebs P, Beutler B et al (2010) Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J Immunol 185:2721–2729CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wingender G, Rogers P, Batzer G et al (2011) Invariant NKT cells are required for airway inflammation induced by environmental antigens. J Exp Med 208:1151–1162CrossRefPubMedPubMedCentralGoogle Scholar
  97. Wingender G, Stepniak D, Krebs P et al (2012) Intestinal microbes affect phenotypes and functions of invariant natural killer T cells in mice. Gastroenterology 143:418–428CrossRefPubMedPubMedCentralGoogle Scholar
  98. Witkin SS, Ledger WJ (2012) Complexities of the uniquely human vagina. Sci Transl Med 4:132fs11CrossRefPubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2015

Authors and Affiliations

  1. 1.Izmir International Biomedicine and Genome Institute (iBG-izmir)Dokuz Eylul University Health CampusIzmirTurkey

Personalised recommendations