Advertisement

Archivum Immunologiae et Therapiae Experimentalis

, Volume 63, Issue 6, pp 465–473 | Cite as

The Role of CXC Chemokines in Pulmonary Fibrosis of Systemic Lupus Erythematosus Patients

  • Agnieszka Nielepkowicz-GoździńskaEmail author
  • Wojciech Fendler
  • Ewa Robak
  • Lilianna Kulczycka-Siennicka
  • Paweł Górski
  • Tadeusz Pietras
  • Ewa Brzeziańska
  • Małgorzata Pietrusińska
  • Adam Antczak
Original Article

Abstract

The inflammatory process in systemic lupus erythematosus (SLE) affects many organs including the lungs. CXC chemokines are suggested to play an important role in the pathogenesis of SLE and pulmonary fibrosis. To estimate the concentrations of CXCL9, CXCL10, CXCL11 in bronchoalveolar lavage fluid (BALF) of patients with and without pulmonary involvements of SLE to evaluate CXC chemokines role in the pathogenesis of pulmonary fibrosis in SLE. Twenty-six SLE patients and 31 healthy controls were evaluated using high-resolution computed tomography (HRCT), pulmonary function tests, the SLE Disease Activity Index (SLEDAI), assessing CXCL9, CXCL11, CXCL10 level in BALF (an enzyme-immunosorbent assay kit). The mean CXCL9 and CXCL11 concentrations in BALF were higher in SLE patients compared to healthy controls (34.09 ± 102.34 vs 10.98 ± 14.65 pg/mL, p < 0.001; 72.65 ± 112.89 vs 16.12 ± 83.75 pg/mL, p = 0.012, respectively). The disease activity scored by SLEDAI and the concentration of CXCL10 in BALF were significantly higher in the SLE patients with pulmonary fibrosis when compared with patients with normal HRCT (8.23 ± 3.19 vs 5.01 ± 2.41; 73.45 ± 34.12 vs 40.76 ± 41.65, respectively, in both p < 0.05). In SLE patients positive correlations were found between SLEDAI and the percentage of lymphocytes in BALF (r = 0.51, p < 0.05); CXCL9 and CXCL10 concentrations in BALF (r = 0.65, p < 0.001); CXCL9 and CXCL11 concentrations in BALF (r = 0.69, p < 0.001). In lupus patients with pulmonary manifestations positive correlations were found between CXCL11 concentration in BALF and SLEDAI (r = 0.55, p < 0.05), CXCL11 concentration and the percentage of neutrophils in BALF (r = 0.69, p < 0.05), CXCL10 concentration and the percentage of neutrophils in BALF (r = 0.57, p < 0.05). Our observations indicate that CXCL9 and CXCL11 play an important role in the pathogenesis of SLE but it needs further studies. These results suggest that CXCL10 and CXCL11 are associated with neutrophils accumulation in the alveolar space of SLE patients with pulmonary fibrosis and should be considered as potential factor of interstitial fibrosis.

Keywords

Bronchoalveolar lavage fluid CXCL9 CXCL10 CXCL11 Pulmonary fibrosis Systemic lupus erythematosus 

Notes

Acknowledgments

The study was funded from the Grant no. N N402 292336 of the Polish Ministry of Science and Higher Education.

Compliance with Ethical Standards

Conflict of interest

None declared.

References

  1. Abujam B, Cheekatla S, Aggarwal A (2013) Urinary CXCL-10/CXCL10 and MCP-1 as markers to assess activity of lupus nephritis. Lupus 22:614–623CrossRefPubMedGoogle Scholar
  2. Abu-Shakra M, Urowitz MB, Gladman DD et al (1995) Mortality studies in systemic lupus erythematosus. Results from a single center. Causes of death. J Rheumatol 22(7):1259–1264PubMedGoogle Scholar
  3. Antonelli A, Ferrari SM, Giuggioli D et al (2014) Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev 13:272–280CrossRefPubMedGoogle Scholar
  4. Antoniou KM, Tzouvelekis A, Alexandrakis MG et al (2006) Different angiogenic activity in pulmonary sarcoidosis and idiopathic pulmonary fibrosis. Chest 130:982–988CrossRefPubMedGoogle Scholar
  5. Balabanian K, Couderc J, Bouchet-Delbos L et al (2003) Role of the chemokine stromal cell-derived factor 1 in autoantibody production and nephritis in murine lupus. J Immunol 170:3392–3400CrossRefPubMedGoogle Scholar
  6. Bauer JW, Petri M, Batliwalla FM et al (2009) Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum 60:3098–3107PubMedCentralCrossRefPubMedGoogle Scholar
  7. Belperio JA, Keane MP, Arenberg DA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8PubMedGoogle Scholar
  8. Bombardier C, Gladman DD, Urowitz MB et al (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum 35:630–664CrossRefPubMedGoogle Scholar
  9. British Thoracic Society Bronchoscopy Guidelines Committee, a Subcommittee of the Standards of Care Committee of the British Thoracic Society (2001) British Thoracic Society guidelines on diagnostic flexible bronchoscopy. Thorax 56(suppl 1):i1–i21CrossRefGoogle Scholar
  10. Burdick MD, Murray LA, Keane MP et al (2005) CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling. Am J Respir Crit Care Med 171:261–268CrossRefPubMedGoogle Scholar
  11. Capper ER, Maskill JK, Gordon C et al (2004) Interleukin (IL)-10, IL-1ra and IL-12 profiles in active and quiescent systemic lupus erythematosus: could longitudinal studies reveal patient subgroups of differing pathology? Clin Exp Immunol 138:348–356PubMedCentralCrossRefPubMedGoogle Scholar
  12. D’Cruz D, Khamashta MA, Hughes G (2007) Pulmonary manifestations of systemic lupus erythematosus. In: Wallace DJ, Hahn BH (eds) Dubois’ lupus erythematosus, 7th edn. Lippincott Williams & Wilkins, Philadelphia, pp 678–699Google Scholar
  13. Elia G (2015) Interferon-γ-inducible chemokines in systemic lupus erythematosus. Clin Ter 166:e41–e46PubMedGoogle Scholar
  14. Eriksson C, Eneslätt K, Ivanoff J et al (2003) Abnormal expression of chemokine receptors on T-cells from patients with systemic lupus erythematosus. Lupus 12:766–774CrossRefPubMedGoogle Scholar
  15. Galligan CL, Matsuyama W, Matsukawa A, Mizuta H et al (2004) Up-regulated expression and activation of the orphan chemokine receptor, CCRL2, in rheumatoid arthritis. Arthritis Rheum 50:1806–1814CrossRefPubMedGoogle Scholar
  16. Groen H, Aslander M, Bootsma H et al (1993) Bronchoalveolar lavage cell analysis and lung function impairment in patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 94:127–133PubMedCentralCrossRefPubMedGoogle Scholar
  17. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725CrossRefPubMedGoogle Scholar
  18. Jiang D, Liang J, Hodge J et al (2004) Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J Clin Invest 114:291–299PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kao AH, Sabatine JM, Manzi S (2004) Lung disease in lupus. In: Wells AU, Denton ChP (eds) Pulmonary involvement in systemic autoimmune diseases. Elsevier, Boston, pp 125–246Google Scholar
  20. Keane MP, Arenberg DA, Lynch JP III et al (1997) The CXC chemokines, IL-8 and CXCL10, regulate angiogenic activity in idiopathic pulmonary fibrosis. J Immunol 159:1437–1443PubMedGoogle Scholar
  21. Keane MP, Belperio JA, Arenberg DA et al (1999) IFNγ-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J Immunol 163:5686–5692PubMedGoogle Scholar
  22. Keane MP, Belperio JA, Burdick MD et al (2001) ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 164:2239–2242CrossRefPubMedGoogle Scholar
  23. Knall C, Young S, Nick JA et al (1996) Interleukin-8 regulation of the Ras/Raf/mitogenactivated protein kinase pathway in human neutrophils. J Biol Chem 271:2832–2838CrossRefPubMedGoogle Scholar
  24. Kong KO, Tan AW, Thong BY et al (2009) Enhanced expression of interferon-inducible protein-10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus. Clin Exp Immunol 156:134–140PubMedCentralCrossRefPubMedGoogle Scholar
  25. La Cava AL (2009) Lupus and T cells. Lupus 18:196–201CrossRefPubMedGoogle Scholar
  26. Lee EY, Lee ZH, Song YW (2009) CXCL10 and autoimmune diseases. Autoimmun Rev 8:379–383CrossRefPubMedGoogle Scholar
  27. Lit LC, Wong CK, Tam LS et al (2006) Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann Rheum Dis 65:209–215PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lynch JP III, Standiford TJ, Rolfe MW et al (1992) Neutrophilic alveolitis in idiopathic pulmonary fibrosis: the role of interleukin-8. Am J Respir Crit Care Med 145:1433–1439Google Scholar
  29. Macintyre N, Crapo RO, Viegi G et al (2005) Standardization of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26:720–735CrossRefPubMedGoogle Scholar
  30. Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26:319–338CrossRefPubMedGoogle Scholar
  31. Narumi S, Takeuchi T, Kobayashi Y et al (2000) Serum levels of IFN-inducible protein-10 relating to the activity of systemic lupus erythematosus. Cytokine 12:1561–1565CrossRefPubMedGoogle Scholar
  32. Nielepkowicz-Goździńska A, Fendler W, Robak E et al (2014) Exhaled IL-8 in systemic lupus erythematosus with and without pulmonary fibrosis. Arch Immunol Ther Exp 62:231–238CrossRefGoogle Scholar
  33. Nor JE, Christensen J, Liu J et al (2001) Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Res 61:2183–2188PubMedGoogle Scholar
  34. Okamoto H, Katsumata Y, Nishimura K et al (2004) Interferon-inducible protein 10/CXCL10 is increased in the cerebrospinal fluid of patients with central nervous system lupus. Arthritis Rheum 50:3731–3732CrossRefPubMedGoogle Scholar
  35. Pan J, Burdick MD, Belperio JA et al (2006) CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis. J Immunol 176:1456–1464CrossRefPubMedGoogle Scholar
  36. Pantelidis P, Southcott AM, Black CM et al (1997) Up-regulation of IL-8 secretion by alveolar macrophages from patients with fibrosis alveolitis: a subpopulation analysis. Clin Exp Immunol 108:95–104PubMedCentralCrossRefPubMedGoogle Scholar
  37. Renzoni EA, Walsh DA, Salmon M et al (2003) Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med 167:438–443CrossRefPubMedGoogle Scholar
  38. Shah D, Wanchu A, Bhatnagar A (2011) Interplay of cytokines and chemokines in the pathogenesis of systemic lupus erythematosus. Am J Immunol 7:29–38CrossRefGoogle Scholar
  39. Strieter RM, Belperio JA, Keane MP (2002) CXC chemokines in angiogenesis related to pulmonary fibrosis. Chest 122(6 suppl):298S–301SCrossRefPubMedGoogle Scholar
  40. Strieter RM, Gomperts BN, Keane MP (2007) The role of CXC chemokines in pulmonary fibrosis. J Clin Invest 117:549–556PubMedCentralCrossRefPubMedGoogle Scholar
  41. Szekanecz Z, Szücs G, Szántó S, Koch AE (2006) Chemokines in rheumatic diseases. Curr Drug Targets 7:91–102CrossRefPubMedGoogle Scholar
  42. Tager AM, Kradin RL, LaCamera P et al (2004) Inhibition of pulmonary fibrosis by the chemokine CXCL10/CXCL10. Am J Respir Cell Mol Biol 31:395–404CrossRefPubMedGoogle Scholar
  43. Tensen CP, Flier J, Van Der Raaij-Helmer EM et al (1999) Human IP-9: a keratinocyte-derived high affinity CXC-chemokine ligand for the CXCL10/CXCL9 receptor (CXCR3). J Invest Dermatol 112:716–722CrossRefPubMedGoogle Scholar
  44. Vielhauer V, Anders HJ, Schlondorff D (2007) Chemokines and chemokine receptors as therapeutic targets in lupus nephritis. Semin Nephrol 27:81–97CrossRefPubMedGoogle Scholar
  45. Wallaert B, Dugas M, Dansin E et al (1990) Subclinical alveolitis in immunological systemic disorders. Transition between health and disease? Eur Respir J 3:1206–1216PubMedGoogle Scholar
  46. Wanger J, Clausen JL, Coates A et al (2005) Standardisation of the measurement of lung volumes. Eur Respir J 26:511–522CrossRefPubMedGoogle Scholar
  47. Witt C, Dörner T, Hiepe F et al (1996) Diagnosis of alveolitis in interstitial lung manifestation in connective tissue diseases: importance of late inspiratory crackles, 67 gallium scan and bronchoalveolar lavage. Lupus 5:606–612CrossRefPubMedGoogle Scholar
  48. Ziegenhagen MW, Schrum S, Zissel G et al (1998) Increased expression of proinflammatory chemokines in bronchoalveolar lavage cells of patients with progressing idiopathic pulmonary fibrosis and sarcoidosis. J Investig Med 46:223–231PubMedGoogle Scholar
  49. Ziegenhagen MW, Rothe ME, Schlaak M et al (2003) Bronchoalveolar and serological parameters reflecting the severity of sarcoidosis. Eur Respir J 21:407–413CrossRefPubMedGoogle Scholar
  50. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127CrossRefPubMedGoogle Scholar

Copyright information

© L. Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland 2015

Authors and Affiliations

  • Agnieszka Nielepkowicz-Goździńska
    • 1
    Email author
  • Wojciech Fendler
    • 2
  • Ewa Robak
    • 3
  • Lilianna Kulczycka-Siennicka
    • 3
  • Paweł Górski
    • 4
  • Tadeusz Pietras
    • 4
  • Ewa Brzeziańska
    • 5
  • Małgorzata Pietrusińska
    • 4
  • Adam Antczak
    • 1
  1. 1.Department of General and Oncological PneumologyMedical University of LodzLodzPoland
  2. 2.Department of Pediatrics, Oncology, Hematology and DiabetologyMedical University of LodzLodzPoland
  3. 3.Department of Dermatology and VenereologyMedical University of LodzLodzPoland
  4. 4.Department of Pneumonology and AllergyMedical University of LodzLodzPoland
  5. 5.Department of Molecular Bases of MedicineMedical University of LodzLodzPoland

Personalised recommendations