Skip to main content

Advertisement

Log in

The Role of Glycyrrhizin, an Inhibitor of HMGB1 Protein, in Anticancer Therapy

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Certain anticancer drugs, such as the peptide CAMEL (aa sequence KWKLFKKIGAULKVL) induce necrotic type of cell death. During this process, a protein termed high mobility group box 1 (HMGB1) is released from cell nucleus into cytoplasm and then into extracellular milieu. Outside of cells, it becomes a proinflammatory cytokine. Its effects range from stimulation of cancer as well as endothelial cell proliferation, to activation of angiogenesis, cell motility and induction of inflammatory conditions. Release of HMGB1 cytokine during the course of anticancer therapy has negative effects upon the therapy itself, since it leads to tumor relapse. We assumed that the inhibition of HMGB1 activity may be conducive towards better therapeutic results in case of drugs inducing necrotic cell death. In this context we studied glycyrrhizin (GR), a triterpenoid saponin glycoside of glycyrrhizic acid and a well-known inhibitor of HMGB1. We have shown that GR inhibits proliferation and migration of cells stimulated by HMGB1 cytokine, as well as HMGB1-induced formation of blood vessels and reduces inflammatory condition (lowering tumor necrosis factor α levels). GR-mediated inhibition of HMGB1 activity (CAMEL-induced release) impedes, in turn, tumor regrowth in mice. As expected, inhibited tumor regrowth is linked to diminished tumor levels of the released HMGB1 and reduced inflammatory condition. To conclude, the use of GR significantly improved anticancer effectiveness of the CAMEL peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Campana L, Bosurgi L, Rovere-Querini P (2008) HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 20:518–523

    Article  PubMed  CAS  Google Scholar 

  • Coffelt SB, Scandurro AB (2008) Tumors sound the alarmin(s). Cancer Res 68:6482–6485

    Article  PubMed  CAS  Google Scholar 

  • Ellerman JE, Brown CK, de Vera M et al (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13:2836–2848

    Article  PubMed  CAS  Google Scholar 

  • Gauley J, Pisetsky DS (2009) The translocation of HMGB1 during cell activation and cell death. Autoimmunity 42:299–301

    Article  PubMed  CAS  Google Scholar 

  • Girard JP (2007) A direct inhibitor of HMGB1 cytokine. Chem Biol 14:345–347

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) The hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Klune JR, Dhupar R, Cardinal J et al (2008) HMGB1: endogenous danger signaling. Mol Med 14:476–484

    Article  PubMed  CAS  Google Scholar 

  • Lamore SD, Cabello CM, Wondrak GT (2010) HMGB1-directed drug discovery targeting cutaneous inflammatory dysregulation. Curr Drug Metab 11:250–265

    Article  PubMed  CAS  Google Scholar 

  • Le Bitoux MA, Stamenkovic I (2008) Tumor-host interactions: the role of inflammation. Histochem Cell Biol 130:1079–1090

    Article  PubMed  CAS  Google Scholar 

  • Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  PubMed  CAS  Google Scholar 

  • Mitola S, Belleri M, Urbinati C et al (2006) Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. J Immunol 176:12–15

    PubMed  CAS  Google Scholar 

  • Mollica L, De Marchis F, Spitaleri A et al (2007) GR binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 14:431–441

    Article  PubMed  CAS  Google Scholar 

  • Nicosia RF, Ottinetti A (1990) Growth of microvessels in serum-free matrix culture of rat aorta. Lab Invest 63:115–122

    PubMed  CAS  Google Scholar 

  • Palumbo R, Sampaolesi M, De Marchis F et al (2004) Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164:441–449

    Article  PubMed  CAS  Google Scholar 

  • Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  CAS  Google Scholar 

  • Raucci A, Palumbo R, Bianchi ME (2007) HMGB1: a signal of necrosis. Autoimmunity 40:285–289

    Article  PubMed  CAS  Google Scholar 

  • Rovere-Querini P, Capobianco A, Scaffidi P et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  • Schlueter C, Weber H, Meyer B et al (2005) Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Am J Pathol 166:1259–1263

    Article  PubMed  CAS  Google Scholar 

  • Sims GP, Rowe DC, Rietdijk ST et al (2010) HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–388

    Article  PubMed  CAS  Google Scholar 

  • Smolarczyk R, Cichoń T, Szala S (2009) Peptides: a new class of anticancer drugs. Postepy Hig Med Dosw 63:360–368

    Google Scholar 

  • Smolarczyk R, Cichoń T, Kamysz W et al (2010) Anticancer effects of CAMEL peptide. Lab Invest 90:940–952

    Article  PubMed  CAS  Google Scholar 

  • Srikrishna G, Freeze HH (2009) Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11:615–628

    PubMed  CAS  Google Scholar 

  • Tang D, Kang R, Zeh HJ 3rd et al (2010) High-mobility group box 1 and cancer. Biochim Biophys Acta 1799:131–140

    Article  PubMed  CAS  Google Scholar 

  • van Beijnum JR, Nowak-Sliwinska P, van den Boezem E et al (2012) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene. doi:10.1038/onc.2012.49

    PubMed  Google Scholar 

  • Yang H, Tracey KJ (2010) Targeting HMGB1 in inflammation. Biochim Biophys Acta 1799:149–156

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wang H, Czura CJ et al (2005) The cytokine activity of HMGB1. J Leukoc Biol 78:1–8

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Li W, Ward MF et al (2010) High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 9:60–72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs A. Sochanik and J. Kajstura for invaluable suggestions and reading the manuscript. This work was supported by the Polish Ministry of Science and Higher Education, Grants No. N N401 034736, N N401 018337, N N401 587 540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Smolarczyk.

About this article

Cite this article

Smolarczyk, R., Cichoń, T., Matuszczak, S. et al. The Role of Glycyrrhizin, an Inhibitor of HMGB1 Protein, in Anticancer Therapy. Arch. Immunol. Ther. Exp. 60, 391–399 (2012). https://doi.org/10.1007/s00005-012-0183-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-012-0183-0

Keywords

Navigation