Skip to main content

Advertisement

Log in

Iron and Immunity: Immunological Consequences of Iron Deficiency and Overload

  • REVIEW
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

The influence of iron on immune function has been long appreciated. However, the molecular basis for this interaction is less well understood. Recently, there have been several important advances that have shed light on the mechanisms that regulate mammalian iron metabolism. The new insights provide a conceptual framework for understanding and manipulating the cross-talk between iron homeostasis and the immune system. This article will review what is currently known about how disturbances of iron metabolism can affect immunity and how activation of the immune system can lead to alterations in iron balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenetic protein

FPN:

Ferroportin

HIF:

Hypoxia-inducible factor

HJV:

Hemojuvelin

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

IRE:

Iron response element

IRP:

IRE-binding protein

Jak2:

Janus kinase 2

LPS:

Lipopolysaccharide

Nramp:

Natural resistance-associated macrophage protein

RBC:

Red blood cell

TfR:

Transferrin receptor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

STAT3:

Signal transducer and activator of transcription 3

References

  • Andrews NC (2008) Forging a field: the golden age of iron biology. Blood 112:219–230

    Article  CAS  PubMed  Google Scholar 

  • Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    Article  CAS  PubMed  Google Scholar 

  • Andriopoulos B, Corradini E, Xia Y et al (2009) BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nat Genet 41:482–487

    Article  CAS  PubMed  Google Scholar 

  • Babitt JL, Huang FW, Wrighting DM et al (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38:531–539

    Article  CAS  PubMed  Google Scholar 

  • Barton JC, Wiener HW, Acton RT et al (2005) Total blood lymphocyte counts in hemochromatosis probands with HFE C282Y homozygosity: relationship to severity of iron overload and HLA-A and -B alleles and haplotypes. BMC Blood Disord 5:5

    Article  PubMed  Google Scholar 

  • Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131:568S–580S

    CAS  PubMed  Google Scholar 

  • Beaumont C, Delaby C (2009) Recycling iron in normal and pathological states. Semin Hematol 46:328–338

    Article  CAS  PubMed  Google Scholar 

  • Bekri S, Gual P, Anty R et al (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–796

    Article  CAS  PubMed  Google Scholar 

  • Biggs TE, Baker ST, Botham MS et al (2001) Nramp1 modulates iron homeostasis in vivo and in vitro: evidence for a role in cellular iron release involving de-acidification of intracellular vesicles. Eur J Immunol 31:2060–2070

    Article  CAS  PubMed  Google Scholar 

  • Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(suppl 2):S33–S40

    PubMed  Google Scholar 

  • Bubici C, Papa S, Dean K et al (2006) Mutual cross-talk between reactive oxygen species and NF-kappaB: molecular basis and biological significance. Oncogene 25:6731–6748

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xiong S, She H et al (2007) Iron causes interactions of TAK1, p21ras and phosphatidylinositol-3-kinase in caveolae to activate I-kappaB kinase in hepatic macrophages. J Biol Chem 282:5582–5588

    Article  CAS  PubMed  Google Scholar 

  • Chlosta S, Fishman DS, Harrington L et al (2006) The iron efflux protein ferroportin regulates the intracellular growth of Salmonella enterica. Infect Immun 74:3065–3067

    Article  CAS  PubMed  Google Scholar 

  • Chung B, Matak P, McKie AT et al (2007) Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J Nutr 137:2366–2370

    CAS  PubMed  Google Scholar 

  • Collins HL, Kaufmann SH, Schaible UE (2002) Iron chelation via deferoxamine exacerbates experimental salmonellosis via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase-dependent respiratory burst. J Immunol 168:3458–3463

    CAS  PubMed  Google Scholar 

  • De Domenico I, Ward DM, Langelier C et al (2007) The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol Biol Cell 18:2569–2578

    Article  PubMed  Google Scholar 

  • De Domenico I, Lo E, Ward DM et al (2009) Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci USA 106:3800–3805

    Article  PubMed  Google Scholar 

  • De Domenico I, Zhang TY, Koening CL et al (2010) Hepcidin mediates transcriptional changes that modulate acute cytokine-induced inflammatory responses in mice. J Clin Invest 120:2395–2405

    Article  PubMed  Google Scholar 

  • del Giudice EM, Santoro N, Amato A et al (2009) Hepcidin in obese children as a potential mediator of the association between obesity and iron deficiency. J Clin Endocrinol Metab 94:5102–5107

    Article  PubMed  Google Scholar 

  • Demirag MD, Haznedaroglu S, Sancak B et al (2009) Circulating hepcidin in the crossroads of anemia and inflammation associated with rheumatoid arthritis. Intern Med 48:421–426

    Article  PubMed  Google Scholar 

  • Dlaska M, Weiss G (1999) Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. J Immunol 162:6171–6177

    CAS  PubMed  Google Scholar 

  • Feder JN, Gnirke A, Thomas W et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  CAS  PubMed  Google Scholar 

  • Flannagan RS, Cosio G, Grinstein S (2009) Anti-microbial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7:355–366

    Article  CAS  PubMed  Google Scholar 

  • Gangaidzo IT, Moyo VM, Mvundura E et al (2001) Association of pulmonary tuberculosis with increased dietary iron. J Infect Dis 184:936–939

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Nemeth E (2009) Iron sequestration and anemia of inflammation. Semin Hematol 46:387–393

    Article  CAS  PubMed  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N et al (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Gomez MA, Alisaraie L, Shio MT et al (2010) Protein tyrosine phosphatases are regulated by mononuclear iron dicitrate. J Biol Chem 285:24620–24628

    Article  CAS  PubMed  Google Scholar 

  • Gordeuk VR, Ballou S, Lozanski G et al (1992) Decreased concentrations of tumor necrosis factor-alpha in supernatants of monocytes from homozygotes for hereditary hemochromatosis. Blood 79:1855–1860

    CAS  PubMed  Google Scholar 

  • Goswami T, Andrews NC (2006) Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalin iron sensing. J Biol Chem 281:28494–28498

    Article  CAS  PubMed  Google Scholar 

  • Goya N, Miyazaki S, Kodate S et al (1972) A family of congenital atransferrinemia. Blood 40:239–245

    CAS  PubMed  Google Scholar 

  • Hamill RL, Woods JC, Cook BA (1991) Congenital atransferrinemia. A case report and review of the literature. Am J Clin Pathol 96:215–218

    CAS  PubMed  Google Scholar 

  • Hartmann H, Eltzschig HK, Wurz H et al (2008) Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology 134:756–767

    Article  CAS  PubMed  Google Scholar 

  • Jason J, Archibald LK, Nwanyanwu OC et al (2001) The effects of iron deficiency on lymphocyte cytokine production and activation: preservation of hepatic iron but not at all cost. Clin Exp Immunol 126:466–473

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  • Kemp JD, Thorson JA, Gomez F et al (1989) Inhibition of lymphocyte activation with anti-transferrin receptor Mabs: a comparison of three reagents and further studies of their range of effects and mechanism of action. Cell Immunol 122:218–230

    Article  PubMed  Google Scholar 

  • Koening C, Miller JC, Nelson JM et al (2009) Toll-like receptors mediate induction of hepcidin in mice infected with Borrelia burgdorferi. Blood 114:1913–1918

    Article  CAS  PubMed  Google Scholar 

  • Kuvibidila SR, Baliga BS, Suskind RM (1981) Effects of iron deficiency anemia on delayed cutaneous hypersensitivity in mice. Am J Clin Nutr 34:2635–2640

    CAS  PubMed  Google Scholar 

  • Lago F, Dieguez C, Gomez-Reino J et al (2007) The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev 18:313–325

    Article  CAS  PubMed  Google Scholar 

  • Lee PL, Beutler E (2009) Regulation of hepcidin and iron-overload disease. Annu Rev Pathol 4:489–515

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Peng H, Gelbart T et al (2004) The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci USA 101:9263–9265

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Peng H, Gelbart T et al (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci USA 102:1906–1910

    Article  CAS  PubMed  Google Scholar 

  • Liu XB, Nguyen NB, Marquess KD et al (2005) Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis 35:47–56

    Article  CAS  PubMed  Google Scholar 

  • Macdougall LG, Anderson R, McNab GM et al (1975) The immune response in iron-deficient children: impaired cellular defense mechanisms with altered humoral components. J Pediatr 86:833–843

    Article  CAS  PubMed  Google Scholar 

  • Macedo MF, Porto G, Costa M et al (2010) Low numbers of CD8+T lymphocytes in hereditary hemochromatosis are explained by a decrease of the most mature CD8+ effector memory T cells. Clin Exp Immunol 159:363–371

    Article  CAS  PubMed  Google Scholar 

  • Magnus SA, Hambleton IR, Moosdeen F et al (1999) Recurrent infections in homozygous sickle cell disease. Arch Dis Child 80:537–541

    Article  CAS  PubMed  Google Scholar 

  • Marquis JF, Gros P (2008) Genetic analysis of resistance to infections in mice: A/J meets C57BL6/J. Curr Top Microbiol Immunol 321:27–57

    Article  CAS  PubMed  Google Scholar 

  • McClung JP, Karl JP (2009) Iron deficiency and obesity: the contribution of inflammation and diminished iron absorption. Nutr Rev 67:100–104

    Article  PubMed  Google Scholar 

  • Melillo G, Taylor LS, Brooks A et al (1997) Functional requirement of the hypoxia-responsive element in the activation of the inducible nitric oxide synthase promoter by the iron chelator desferrioxamine. J Biol Chem 272:12236–12243

    Article  CAS  PubMed  Google Scholar 

  • Melo RA, Garcia AB, Viana SR et al (1997) Lymphocyte subsets in experimental hemochromatosis. Acta Haematol 98:72–75

    Article  CAS  PubMed  Google Scholar 

  • Mencacci A, Cenci E, Boelaert JR et al (1997) Iron overload alters innate and T helper cell responses to Candida albicans in mice. J Infect Dis 175:1467–1476

    Article  CAS  PubMed  Google Scholar 

  • Meynard D, Kautz L, Darnaud V et al (2009) Lack of BMP6 induces massive iron overload. Nat Genet 41:478–481

    Article  CAS  PubMed  Google Scholar 

  • Moyo VM, Gangaidzo IT, Gordeuk VR et al (1997) Tuberculosis and iron overload in Africa: a review. Cent Afr J Med 43:334–339

    CAS  PubMed  Google Scholar 

  • Muckenthaler MU, Galy B, Hentze MW (2008) Systemic iron homeostasis and the IRE/IRP regulatory network. Annu Rev Nutr 28:197–213

    Article  CAS  PubMed  Google Scholar 

  • Murray MJ, Murray AB, Murray MB et al (1978) The adverse effect of iron repletion on the course of certain infections. Br Med J 2:1113–1115

    Article  CAS  PubMed  Google Scholar 

  • Nairz M, Theurl I, Ludwiczek S et al (2007) The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium. Cell Microbiol 9:2126–2140

    Article  CAS  PubMed  Google Scholar 

  • Nairz M, Theurl I, Schroll A et al (2009) Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 114:3642–3651

    Article  CAS  PubMed  Google Scholar 

  • Neckers LM, Yenokida G, James SP (1984) The role of the transferrin receptor in human B lymphocyte activation. J Immunol 133:2437–2441

    CAS  PubMed  Google Scholar 

  • Ned RM, Swat W, Andrews NC (2003) Transferrin receptor 1 is differentially required in lymphocyte development. Blood 102:3711–3718

    Article  CAS  PubMed  Google Scholar 

  • Nemeth E, Rivera S, Gabayan V et al (2004a) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276

    CAS  PubMed  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J et al (2004b) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093

    Article  CAS  PubMed  Google Scholar 

  • Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  CAS  PubMed  Google Scholar 

  • Olakanmi O, Schlesinger LS, Britigan BE (2007) Hereditary hemochromatosis results in decreased iron acquisition and growth by Mycobacterium tuberculosis within human macrophages. J Leukoc Biol 81:195–204

    Article  CAS  PubMed  Google Scholar 

  • Oppenheimer SJ (2001) Iron and its relation to immunity and infectious disease. J Nutr 131:616S–635S

    CAS  PubMed  Google Scholar 

  • Paradkar PN, De Domenico I, Durchfort N et al (2008) Iron depletion limits intracellular bacterial growth in macrophages. Blood 112:866–874

    Article  CAS  PubMed  Google Scholar 

  • Peyssonnaux C, Zinkernagel AS, Datta V et al (2006) TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 107:3727–3732

    Article  CAS  PubMed  Google Scholar 

  • Peyssonnaux C, Zinkernagel AS, Schuepbach RA et al (2007) Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest 117:1926–1932

    Article  CAS  PubMed  Google Scholar 

  • Pietrangelo A (2006) Hereditary hemochromatosis. Annu Rev Nutr 26:251–270

    Article  CAS  PubMed  Google Scholar 

  • Salahudeen AA, Thompson JW, Ruiz JC et al (2009) An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326:722–726

    Article  CAS  PubMed  Google Scholar 

  • Sazawal S, Black RE, Ramsan M et al (2006) Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet 367:133–143

    Article  CAS  PubMed  Google Scholar 

  • Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953

    Article  CAS  PubMed  Google Scholar 

  • Schmidt PJ, Toran PT, Giannetti AM et al (2008) The transferrin receptor modulates Hfe-dependent regulation of hepcidin expression. Cell Metab 7:205–214

    Article  PubMed  Google Scholar 

  • Seldon MP, Silva G, Pejanovic N et al (2007) Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol 179:7840–7851

    CAS  PubMed  Google Scholar 

  • Semrin G, Fishman DS, Bousvaros A et al (2006) Impaired intestinal iron absorption in Crohn’s disease correlates with disease activity and markers of inflammation. Inflamm Bowel Dis 12:1101–1106

    Article  PubMed  Google Scholar 

  • Silvestri L, Pagani A, Nai A et al (2008) The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab 8:502–511

    Article  CAS  PubMed  Google Scholar 

  • Soe-Lin S, Sheftel AD, Wasyluk B et al (2008) Nramp1 equips macrophages for efficient iron recycling. Exp Hematol 36:929–937

    Article  CAS  PubMed  Google Scholar 

  • Soe-Lin S, Apte SS, Andriopoulos B Jr et al (2009) Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA 106:5960–5965

    Article  CAS  PubMed  Google Scholar 

  • Srikantia SG, Prasad JS, Bhaskaram C et al (1976) Anemia and the immune response. Lancet 1:1307–1309

    Article  CAS  PubMed  Google Scholar 

  • Tanno T, Bhanu NV, Oneal PA et al (2007) High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 13:1096–1101

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  • Van Zandt KE, Sow FB, Florence WC et al (2008) The iron export protein ferroportin 1 is differentially expressed in mouse macrophage populations and is present in the mycobacterial-containing phagosome. J Leukoc Biol 84:689–700

    Article  PubMed  Google Scholar 

  • Vashisht AA, Zumbrennen KB, Huang X et al (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326:718–721

    Article  CAS  PubMed  Google Scholar 

  • Verga Falzappa MV, Vujic Spasic M, Kessler R et al (2007) STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109:353–358

    Article  Google Scholar 

  • Wanachiwanawin W (2000) Infections in E-beta thalassemia. J Pediatr Hematol Oncol 22:581–587

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cherayil BJ (2009) Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun 1:455–464

    Article  CAS  PubMed  Google Scholar 

  • Wang RH, Li C, Xu X et al (2005) A role of SMAD4 in iron metabolism through the regulation of hepcidin expression. Cell Metab 2:399–409

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Johnson EE, Shi HN et al (2008) Attenuated inflammatory responses in hemachromatosis reveal a role for iron in the regulation of macrophage cytokine translation. J Immunol 181:2723–2731

    CAS  PubMed  Google Scholar 

  • Wang L, Harrington L, Trebicka E et al (2009) Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J Clin Invest 119:3322–3328

    CAS  PubMed  Google Scholar 

  • Ward PP, Paz E, Conneely OM (2005) Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci 62:2540–2548

    Article  CAS  PubMed  Google Scholar 

  • Weiss G, Werner-Felmayer G, Werner ER et al (1994) Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 180:969–976

    Article  CAS  PubMed  Google Scholar 

  • Wrighting DM, Andrews NC (2006) IL-6 induces hepcidin expression through STAT3. Blood 108:3204–3209

    Article  CAS  PubMed  Google Scholar 

  • Wu WH, Meydani M, Meydani SN et al (1990) Effect of dietary iron overload on lipid peroxidation, prostaglandin synthesis and lymphocyte proliferation in young and old rats. J Nutr 120:280–289

    CAS  PubMed  Google Scholar 

  • Zhang X, Jin M, Wu H et al (2008) Biomarkers of lupus nephritis determined by serial urine proteomics. Kidney Int 74:799–807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is supported by grants from the National Institutes of Health (R56 AI089700), the Broad Medical Research Program (IBD-0253) and the Crohn’s and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby J. Cherayil.

About this article

Cite this article

Cherayil, B.J. Iron and Immunity: Immunological Consequences of Iron Deficiency and Overload. Arch. Immunol. Ther. Exp. 58, 407–415 (2010). https://doi.org/10.1007/s00005-010-0095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0095-9

Keywords

Navigation