Skip to main content

Advertisement

Log in

Autoimmune Versus Oligodendrogliopathy: The Pathogenesis of Multiple Sclerosis

  • REVIEW
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system (CNS); it affect millions of patients worldwide and the number of patients is on the rise. Current treatment options are fairly limited and there is a strong unmet need for disease-targeted therapies for MS. The most widely accepted hypothesis for the pathogenesis of MS is that it is a primary autoimmune disease in which myelin-specific T cells play a central role in the progression of demyelination. According to this hypothesis, a powerful immune suppression or a reconstruction of the immune system to abrogate disease-specific leukocytes early in the development of the disease is expected to halt or even reverse the disease, since remyelination is an exceptionally efficient regenerative process in the CNS. However, recent neuropathological studies have provided evidence of primary oligodendrogliopathy as a cause of demyelination, suggesting that immune reactions may be a mere secondary event in the course of MS. On the other hand, some recent clinical trial results of new immune-suppressive treatments showed a nearly complete blockade of relapses and significant, albeit incomplete, neurological improvement. Therefore, which hypothesis—autoimmunity or oligodendrogliopathy—lights the correct path to a “cure” for MS?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADEM:

Acute disseminating encephalomyelitis

BBB:

Blood–brain barrier

CCL:

CC chemokine ligand

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

EAE:

Experimental autoimmune encephalomyelitis

GA:

Glatiramer acetate

IFN:

Interferon

IL:

Interleukin

LT:

Lymphotoxin

MR:

Magnetic resonance

MS:

Multiple sclerosis

MTX:

Mitoxantrone

OPCs:

Oligodendrocyte precursor cells

PPMS:

Primary progressive multiple sclerosis

RRMS:

Relapsing-remitting multiple sclerosis

SAS:

Subarachnoid space

SPMS:

Secondary progressive multiple sclerosis

TNF:

Tumor necrosis factor

References

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    Article  PubMed  Google Scholar 

  • Bartholomäus I, Kawakami N, Odoardi F et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98

    Article  PubMed  Google Scholar 

  • Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37–53

    Article  PubMed  Google Scholar 

  • Breij EC, Brink BP, Veerhuis R et al (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Sawchenko PE (2007) Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 502:236–260

    Article  PubMed  Google Scholar 

  • Burt RK, Loh Y, Cohen B et al (2009) Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol 8:244–253

    Article  CAS  PubMed  Google Scholar 

  • Chang A, Nishiyama A, Peterson J et al (2000) NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404–6412

    CAS  PubMed  Google Scholar 

  • Charcot J (1868) Histologie de la sclérose en plaque. Gazette des Hôpitaux 41:554–566

    Google Scholar 

  • Coles AJ, Compston DA, Selmaj KW et al (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359:1786–1801

    Article  PubMed  Google Scholar 

  • Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  • Eugster HP, Frei K, Bachmann R et al (1999) Severity of symptoms and demyelination in MOG-induced EAE depends on TNFR1. Eur J Immunol 29:626–632

    Article  CAS  PubMed  Google Scholar 

  • Frei K, Siepl C, Groscurth P et al (1987) Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 17:1271–1278

    Article  CAS  PubMed  Google Scholar 

  • Furtado GC, Marcondes MC, Latkowski JA et al (2008) Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. J Immunol 181:4648–4655

    CAS  PubMed  Google Scholar 

  • Hartung HP, Gonsette R, König N et al (2002) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360:2018–2025

    Article  PubMed  Google Scholar 

  • Henderson AP, Barnett MH, Parratt JD et al (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753

    Article  PubMed  Google Scholar 

  • Johnson KP, Brooks BR, Cohen JA et al (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 45:1268–1276

    CAS  PubMed  Google Scholar 

  • Kotter MR, Li WW, Zhao C et al (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann T, Miron V, Cui Q et al (2008) Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131:1749–1758

    Article  CAS  PubMed  Google Scholar 

  • Lieberman AP, Pitha PM, Shin HS et al (1989) Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci USA 86:6348–6352

    Article  CAS  PubMed  Google Scholar 

  • Lucchinett CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308

    Article  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  CAS  PubMed  Google Scholar 

  • Millefiorini E, Gasperini C, Pozzilli C et al (1997) Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol 244:153–159

    Article  CAS  PubMed  Google Scholar 

  • Nakahara J, Aiso S (2006) Fc receptor-positive cells in remyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 65:582–591

    Article  CAS  PubMed  Google Scholar 

  • Nakahara J, Aiso S, Suzuki N (2009a) Factors that retard remyelination in multiple sclerosis with a focus on TIP30: a novel therapeutic target. Expert Opin Ther Targets 13:1375–1376

    Article  CAS  PubMed  Google Scholar 

  • Nakahara J, Kanekura K, Nawa M et al (2009b) Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J Clin Invest 119:169–181

    CAS  PubMed  Google Scholar 

  • Pang Y, Campbell L, Zheng B et al (2010) Lipopolysaccharide-activated microglia induce death of oligodendrocyte progenitor cells and impede their development. Neuroscience 166:464–475

    Article  CAS  PubMed  Google Scholar 

  • Paterson PY (1960) Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 111:119–136

    Article  CAS  PubMed  Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  • Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523

    Article  CAS  PubMed  Google Scholar 

  • Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58:39–53

    Article  CAS  PubMed  Google Scholar 

  • Roboz-Einstein E (1959) Allergic encephalomyelitis as an experimental model for multiple sclerosis. Calif Med 91:204–206

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Warrington AE, Pease LR (2009) Human natural autoantibodies in the treatment of neurologic disease. Neurology 72:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Rosati G (2001) The prevalence of multiple sclerosis in the world: an update. Neurol Sci 22:117–139

    Article  CAS  PubMed  Google Scholar 

  • Ruddle NH, Bergman CM, McGrath KM et al (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Rudick RA, Stuart WH, Calabresi PA et al (2006) Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Eng J Med 354:911–923

    Article  CAS  Google Scholar 

  • Schrempf W, Ziemssen T (2007) Glatiramer acetate: mechanisms of action in multiple sclerosis. Autimmun Rev 6:469–475

    Article  CAS  Google Scholar 

  • Scolding N, Franklin R, Stevens S et al (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121:2221–2228

    Article  PubMed  Google Scholar 

  • Selmaj K, Raine CS, Farooq M et al (1991a) Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. J Immunol 147:1522–1529

    CAS  PubMed  Google Scholar 

  • Selmaj K, Raine CS, Cross AH (1991b) Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Ann Neurol 30:694–700

    Article  CAS  PubMed  Google Scholar 

  • Selmaj K, Papierz W, Glabiński A et al (1995) Prevention of chronic relapsing experimental autoimmune encephalomyelitis by soluble tumor necrosis factor receptor I. J Neuroimmunol 56:135–141

    Article  CAS  PubMed  Google Scholar 

  • Setzu A, Lathia JD, Zhao C et al (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297–303

    Article  PubMed  Google Scholar 

  • Sicotte NL, Voskuhl RR (2001) Onset of multiple sclerosis associated with anti-TNF therapy. Neurology 57:1885–1888

    CAS  PubMed  Google Scholar 

  • Sriram S, Steiner I (2005) Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol 58:939–945

    Article  CAS  PubMed  Google Scholar 

  • Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21

    Article  CAS  PubMed  Google Scholar 

  • The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group (1999) TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53:457–465

    Google Scholar 

  • Tzartos JS, Friese MA, Craner MJ et al (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  CAS  PubMed  Google Scholar 

  • van Oosten BW, Lai M, Hodgkinson S et al (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:351–357

    PubMed  Google Scholar 

  • Waldor MK, Sriram S, Hardy R et al (1985) Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227:415–417

    Article  CAS  PubMed  Google Scholar 

  • Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601–609

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Jin Nakahara is supported by the Keio University KANRINMARU Project. This work was supported by Research Grant no. 09-24 from the National Institute of Biomedical Innovation of Japan, by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by Keio University Research Grants for Life Science and Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Nakahara.

About this article

Cite this article

Nakahara, J., Aiso, S. & Suzuki, N. Autoimmune Versus Oligodendrogliopathy: The Pathogenesis of Multiple Sclerosis. Arch. Immunol. Ther. Exp. 58, 325–333 (2010). https://doi.org/10.1007/s00005-010-0094-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0094-x

Keywords

Navigation