Skip to main content

Antimicrobial Peptides in the Brain

Abstract

Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system of many species. The brain is an immunologically privileged organ but can produce a robust immune response against pathogens and cell debris, promoting rapid and efficient clearance. AMPs may be critically involved in the innate immune system of the brain. Though the mechanisms of AMPs’ action in the brain still need further elucidation, many studies have shown that AMPs are multifunctional molecules in the brain. In addition to antimicrobial action, they take part in congenital and adaptive immune reactions (immunoregulation), function as signaling molecules in tissue repair, inflammation and other important processes through different mechanisms, and they might, in addition, become diagnostic markers of brain disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

AMPs:

Antimicrobial peptides

BBB:

Blood–brain barrier

CNS:

Central nervous system

PRRs:

Pattern-recognition receptors

PAMPs:

Pathogen-associated molecular patterns

NODs:

Nucleotide-binding oligomerization domain proteins

TLR:

Toll-like receptor

HBD:

Human β defensin

HNP:

Human α-defensin

HD-5:

Human α-defensin 5

LPS:

Lipopolysaccharide

IL:

Interleukin

TNF:

Tumor necrosis factor

CRAMP:

Cathelicidin-related antimicrobial peptide

LL-37:

Human cathelicidin

hCAP18:

Human cathelicidin antimicrobial protein

rCRAMP:

Rat CRAMP

NAMPs:

Neuro-antimicrobial peptides

PMNs:

Polymorphonuclear leukocytes

PEA:

Proenkephalin A

NK1:

Neurokinin-1

NPY:

Neuropeptide Y

BRPs:

Bombesin-related peptides family

DCD:

Dermcidin

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

PKC:

Protein kinase C

References

  • Agerberth B, Gunne H, Odeberg J et al (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Allaker RP (2008) Host defense peptides-a bridge between the innate and adaptive immune responses. Trans R Soc Trop Med Hyg 102:3–4

    Article  CAS  PubMed  Google Scholar 

  • Aravalli RN, Peterson PK, Lokensgard JR (2007) Toll-like receptors in defense and damage of the central nervous system. J Neuroimmune Pharmacol 2:297–312

    Article  PubMed  Google Scholar 

  • Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1:141–150

    Article  CAS  PubMed  Google Scholar 

  • Bals R, Wang X, Zasloff M et al (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 95:9541–9546

    Article  CAS  PubMed  Google Scholar 

  • Baranowska B (2009) Bombesin modulates the control of energy homeostasis and pituitary hormone release. Neuro Endocrinol Lett 30:3–5

    CAS  PubMed  Google Scholar 

  • Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300:1524–1525

    Article  CAS  PubMed  Google Scholar 

  • Becher B, Bechmann I, Greter M (2006) Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med 84:532–543

    Article  CAS  PubMed  Google Scholar 

  • Behar O, Ovadia H, Polakiewicz RD et al (1994) Lipopolysaccharide induces proenkephalin gene expression in rat lymph nodes and adrenal glands. Endocrinology 134:475–481

    Article  CAS  PubMed  Google Scholar 

  • Beisswenger C, Bals R (2005) Functions of antimicrobial peptides in host defense and immunity. Curr Protein Pept Sci 6:255–264

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2009) Neuropeptide Y: its multiple effects in the CNS and potential clinical significance. Neurology 72:1016–1020

    Article  PubMed  Google Scholar 

  • Bergman P, Termén S, Johansson L et al (2005) The antimicrobial peptide rCRAMP is present in the central nervous system of the rat. J Neurochem 93:1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Bergman P, Johansson L, Wan H et al (2006) Induction of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges after meningococcal infection. Infect Immun 74:6982–6991

    Article  CAS  PubMed  Google Scholar 

  • Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  CAS  PubMed  Google Scholar 

  • Bost KL (2004) Tachykinin-mediated modulation of the immune response. Front Biosci 9:3331–3332

    Article  CAS  PubMed  Google Scholar 

  • Bowdish DM, Davidson DJ, Hancock RE (2006) Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 306:27–66

    Article  CAS  PubMed  Google Scholar 

  • Braff MH, Gallo RL (2006) Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol 306:91–110

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg LO, Varoga D, Nicolaeva N et al (2008) Role of glial cells in the functional expression of LL-37/rat cathelin-related antimicrobial peptide in meningitis. J Neuropathol Exp Neurol 67:1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, Ackermann M, McCray PB Jr et al (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    Article  CAS  PubMed  Google Scholar 

  • Brogden KA, Guthmiller JM, Salzet M et al (2005) The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 6:558–564

    CAS  PubMed  Google Scholar 

  • Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30

    Article  CAS  PubMed  Google Scholar 

  • Bulet P, Stöcklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  CAS  PubMed  Google Scholar 

  • Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  CAS  PubMed  Google Scholar 

  • Chaly YV, Paleolog EM, Kolesnikova TS et al (2000) Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 11:257–266

    CAS  PubMed  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobialpeptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202

    Article  CAS  PubMed  Google Scholar 

  • Charp PA, Rice WG, Raynor RL et al (1988) Inhibition of protein kinase C by defensins, antibiotic peptides from human neutrophils. Biochem Pharmacol 37:951–956

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Xu Z, Peng L et al (2006) Recent advances in the research and development of human defensins. Peptides 27:931–940

    Article  CAS  PubMed  Google Scholar 

  • Chromek M, Slamová Z, Bergman P et al (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641

    Article  CAS  PubMed  Google Scholar 

  • Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767

    Article  CAS  PubMed  Google Scholar 

  • Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett 368:173–176

    Article  CAS  PubMed  Google Scholar 

  • Cunningham TJ, Jing H, Akerblom I et al (2002) Identification of the human cDNA for new survival/evasion peptide (DSEP): studies in vitro and in vivo of overexpression by neural cells. Exp Neurol 177:32–39

    Article  CAS  PubMed  Google Scholar 

  • De Leeuw E, Lu W (2007) Human defensins: turning defense into offense? Infect Disord Drug Targets 7:67–70

    Article  PubMed  Google Scholar 

  • De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347

    Article  PubMed  CAS  Google Scholar 

  • Dringen R, Bishop GM, Koeppe M et al (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890

    Article  CAS  PubMed  Google Scholar 

  • Duits LA, Ravensbergen B, Rademaker M et al (2002) Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106:517–525

    Article  CAS  PubMed  Google Scholar 

  • El Karim IA, Linden GJ, Orr DF et al (2008) Antimicrobial activity of neuropeptides against a range of micro-organisms from skin, oral, respiratory and gastrointestinal tract sites. J Neuroimmunol 200:11–16

    Article  CAS  PubMed  Google Scholar 

  • Falsig J, van Beek J, Hermann C et al (2008) Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 86:1434–1447

    Article  CAS  PubMed  Google Scholar 

  • Fang XM, Shu Q, Chen QX et al (2003) Differential expression of alpha- and beta-defensins in human peripheral blood. Eur J Clin Invest 33:82–87

    Article  CAS  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327

    Article  CAS  PubMed  Google Scholar 

  • Fellermann K, Wehkamp J, Herrlinger KR et al (2003) Crohn’s disease: a defensin deficiency syndrome? Eur J Gastroenterol Hepatol 15:627–634

    Article  CAS  PubMed  Google Scholar 

  • Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2006) Hepcidin and its role in regulating systemic iron metabolism. Hematology Am Soc Hematol Educ Program 29–35:507

    Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2:1–33

    Article  CAS  Google Scholar 

  • Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    Article  PubMed  Google Scholar 

  • Hänninen MM, Haapasalo J, Haapasalo H et al (2009) Expression of iron-related genes in human brain and brain tumors. BMC Neurosci 10:36

    Article  PubMed  CAS  Google Scholar 

  • Hansen CJ, Burnell KK, Brogden KA (2006) Antimicrobial activity of substance P and neuropeptide Y against laboratory strains of bacteria and oral microorganisms. J Neuroimmunol 177:215–218

    Article  CAS  PubMed  Google Scholar 

  • Hao HN, Zhao J, Lotoczky G et al (2001) Induction of human beta-defensin-2 expression in human astrocytes by lipopolysaccharide and cytokines. J Neurochem 77:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Hase K, Murakami M, Iimura M et al (2003) Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Gastroenterology 125:1613–1625

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka T, Nakazato M, Date Y et al (2001) Nucleotide sequence and expression of rat beta-defensin-1: its significance in diabetic rodent models. Nephron 88:65–70

    Article  CAS  PubMed  Google Scholar 

  • Hirsch T, Jacobsen F, Steinau HU et al (2008) Host defense peptides and the new line of defence against multiresistant infections. Protein Pept Lett 15:238–243

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Bartfai T, Bloom F (2003) Neuropeptides: opportunities for drug discovery. Lancet Neurol 8:463–472

    Article  Google Scholar 

  • Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778:357–375

    Article  CAS  PubMed  Google Scholar 

  • Huttner KM, Kozak CA, Bevins CL (1997) The mouse genome encodes a single homolog of the antimicrobial peptide human beta defensin1. FEBS Lett 413:45–49

    Article  CAS  PubMed  Google Scholar 

  • Iimura M, Gallo RL, Hase K et al (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174:4901–4907

    CAS  PubMed  Google Scholar 

  • Jeyakumar M, Williams I, Smith D et al (2009) Critical role of iron in the pathogenesis of the murine gangliosidoses. Neurobiol Dis 34:406–416

    Article  CAS  PubMed  Google Scholar 

  • Kamysz W, Okrój M, Łukasiak J (2003) Novel properties of antimicrobial peptides. Acta Biochim Pol 50:461–469

    CAS  PubMed  Google Scholar 

  • Kapetanovic R, Cavaillon JM (2007) Early events in innate immunity in the recognition of microbial pathogens. Expert Opin Biol Ther 7:907–918

    Article  CAS  PubMed  Google Scholar 

  • Kim KS (2003) Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4:376–385

    Article  CAS  PubMed  Google Scholar 

  • Klotman ME, Chang TL (2006) Defensins ininnate antiviral immunity. Nat Rev Immunol 6:447–456

    Article  CAS  PubMed  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389–406

    Article  CAS  PubMed  Google Scholar 

  • Koczulla R, von Degenfeld G, Kupatt C et al (2003) An angiogenic role for the human peptide antibioticLL-37/hCAP-18. J Clin Invest 111:1665–1672

    CAS  PubMed  Google Scholar 

  • Krause A, Neitz S, Mägert HJ et al (2000) LEAP-1, a novel highly disulfidebonded human peptide, exhibits antimicrobial activity. FEBS Lett 480:147–150

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  PubMed  Google Scholar 

  • Lai YP, Peng YF, Zuo Y et al (2005) Functional and structural characterization of recombinant dermcidin1-L, a human antimicrobial peptide. Biochem Biophys Res Commun 328:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lee NJ, Herzog H (2009) NPY regulation of bone remodelling. Neuropeptides 43:457–463

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Ganz T (2002) Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 9:18–22

    Article  PubMed  Google Scholar 

  • Li J, Xu X, Yu H et al (2006) Direct antimicrobial activities of PR-bombesin. Life Sci 78:1953–1956

    Article  CAS  PubMed  Google Scholar 

  • Liu AY, Destoumieux D, Wong AV et al (2002) Human beta-defensin-2 production in keratinocytes is regulated by interleukin-1, bacteria, and the state of differentiation. J Invest Dermatol 118:275–281

    Article  CAS  PubMed  Google Scholar 

  • Lundy FT, Linden GJ (2004) Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med 15:82–98

    Article  PubMed  Google Scholar 

  • Lundy FT, Nelson J, Lockhart D et al (2008) Antimicrobial activity of truncated alpha-defensin (human neutrophil peptide (HNP)-1) analogues without disulphide bridges. Mol Immunol 45:190–193

    Article  CAS  PubMed  Google Scholar 

  • Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15:933–946

    Article  CAS  PubMed  Google Scholar 

  • Mallow EB, Harris A, Salzman N et al (1996) Human enteric defensins. Gene structure and developmental expression. J Biol Chem 271:4038–4045

    Article  CAS  PubMed  Google Scholar 

  • Marshall SH, Arenas G (2003) Antimicriobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechnol 6:271–284

    Article  Google Scholar 

  • Maxwell AI, Morrison GM, Dorin JR (2003) Rapid sequence divergence in mammalian-defensins by adaptive evolution. Mol Immunol 40:413–421

    Article  CAS  PubMed  Google Scholar 

  • Menendez A, Brett Finlay B (2007) Defensins in the immunology of bacterial infections. Curr Opin Immunol 19:385–391

    Article  CAS  PubMed  Google Scholar 

  • Metz-Boutigue MH, Kieffer AE, Goumon Y et al (2003) Innate immunity: involvement of new neuropeptides. Trends Microbiol 11:585–592

    Article  CAS  PubMed  Google Scholar 

  • Moody TW, Merali Z (2004) Bombesin-like peptides and associated receptors within the brain: distribution and behavioral implications. Peptides 25:511–520

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Ohtake T, Dorschner RA et al (2002a) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Ohtake T, Dorschner RA et al (2002b) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095

    Article  CAS  PubMed  Google Scholar 

  • Murakami M, Dorschner RA, Stern LJ et al (2005) Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 57:10–15

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Okamura N, Arai H et al (1999) Expression of human beta-defensin-1 in the choroid plexus. Ann Neurol 45:685

    Article  CAS  PubMed  Google Scholar 

  • Nemeth E, Rivera S, Gabayan V et al (2004) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276

    CAS  PubMed  Google Scholar 

  • Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    Article  CAS  PubMed  Google Scholar 

  • Nijnik A, Hancock RE (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16:41–47

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Someya A et al (2002) A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106:20–26

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Ushio H, Nakano N et al (2007) Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 127:594–604

    Article  CAS  PubMed  Google Scholar 

  • Niyonsaba F, Suzuki A, Ushio H et al (2009) The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br J Dermatol 160:243–249

    Article  CAS  PubMed  Google Scholar 

  • Oates PS (2007) The role of hepcidin and ferroportin in iron absorption. Histol Histopathol 22:791–804

    CAS  PubMed  Google Scholar 

  • Ostergaard C, Sandvang D, Frimodt-Møller N et al (2009) High cerebrospinal fluid (CSF) penetration and potent bactericidal activity in CSF of NZ2114, a novel plectasin variant, during experimental pneumococcal meningitis. Antimicrob Agents Chemother 53:1581–1585

    Article  PubMed  CAS  Google Scholar 

  • Pazgiera M, Hoover DM, Yang D et al (2006) Human beta-defensins. Cell Mol Life Sci 63:1294–1313

    Article  CAS  Google Scholar 

  • Pereira HA, Moore P, Grammas P (1996) CAP37, a neutrophil granule-derived protein stimulates protein kinase C activity in endothelial cells. J Leukoc Biol 60:415–422

    CAS  PubMed  Google Scholar 

  • Pestonjamasp VK, Huttner KH, Gallo RL (2001) Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 22:1643–1650

    Article  CAS  PubMed  Google Scholar 

  • Polazzi E, Contestabile A (2002) Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev Neurosci 13:221–242

    PubMed  Google Scholar 

  • Porter D, Weremowicz S, Chin K et al (2003) A neural survival factor is a candidate oncogene in breast cancer. Proc Nat Acad Sci USA 100:10931–10936

    Article  CAS  PubMed  Google Scholar 

  • Qian ZM, Wang Q (1998) Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev 27:257–267

    Article  CAS  PubMed  Google Scholar 

  • Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29:27–43

    Article  CAS  PubMed  Google Scholar 

  • Ramasundara M, Leach ST, Lemberg DA et al (2009) Defensins and inflammation: the role of defensins in inflammatory bowel disease. J Gastroenterol Hepatol 24:202–208

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Kivisäkk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  CAS  PubMed  Google Scholar 

  • Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Salzet M (2002) Antimicrobial peptides are signaling molecules. Trends Immunol 23:283–284

    Article  CAS  PubMed  Google Scholar 

  • Salzet M, Tasiemski A (2001) Involvement of pro-enkephalin-derived peptides in immunity. Dev Comp Immunol 25:177–185

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9:227–235

    Article  PubMed  Google Scholar 

  • Scapini P, Lapinet-Vera JA, Gasperini S et al (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  • Schauber J, Gallo RL (2008) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 122:261–266

    Article  CAS  PubMed  Google Scholar 

  • Schauber J, Gallo RL (2009) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 124(3 suppl 2):R13–R18

    CAS  PubMed  Google Scholar 

  • Schikorski D, Cuvillier-Hot V, Leippe M et al (2008) Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181:1083–1095

    CAS  PubMed  Google Scholar 

  • Schittek B, Hipfel R, Sauer B et al (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Schluesener H, Meyermann R (1995) Neutrophilic defensins penetrate the blood-brain barrier. J Neurosci Res 42:718–723

    Article  CAS  PubMed  Google Scholar 

  • Schneider JJ, Unholzer A, Schaller M et al (2005) Human defensins. J Mol Med 83:587–595

    Article  CAS  PubMed  Google Scholar 

  • Scholzen T, Armstrong CA, Bunnett NW et al (1998) Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol 7:81–96

    Article  CAS  PubMed  Google Scholar 

  • Selsted ME, Ouellete AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    Article  CAS  PubMed  Google Scholar 

  • Senyürek I, Paulmann M, Sinnberg T et al (2009) Dermcidin-derived peptides show a different mode of action than the cathelicidin LL-37 against Staphylococcus aureus. Antimicrob Agents Chemother 53:2499–2509

    Article  PubMed  CAS  Google Scholar 

  • Shaykhiev R, Beisswenger C, Kandler K et al (2005) Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 289:L842–L848

    Article  CAS  PubMed  Google Scholar 

  • Simard AR, Soulet D, Gowing G et al (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimers disease. Neuron 49:489–502

    Article  CAS  PubMed  Google Scholar 

  • Skalicky JJ, Selsted ME, Pardi A (1994) Structure and dynamics of the neutrophil defensins NP-2, NP-5, and HNP-1: NMR studies of amide hydrogen exchange kinetics. Proteins 20:52–67

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Hultmark D, Engstrom A et al (2009) Sequence and specificity of two antibacterial proteins involved in insect immunity. J Immunol 182:6635–6637

    CAS  PubMed  Google Scholar 

  • Stolzenberg ED, Anderson GM, Ackermann MR et al (1997) Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci USA 94:8686–8690

    Article  CAS  PubMed  Google Scholar 

  • van ‘t Hof W, Veerman EC, Helmerhorst EJ et al (2001) Antimicrobial peptides: properties and applicability. Biol Chem 382:597–619

    Article  PubMed  Google Scholar 

  • van Wetering S, Tjabringa GS, Hiemstra PS (2005) Interactions between neutrophil-derived antimicrobial peptides and airway epithelial cells. J Leukoc Biol 77:444–450

    Article  PubMed  CAS  Google Scholar 

  • Vouldoukis I, Shai Y, Nicolas P et al (1996) Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett 380:237–240

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Corey E, Hass GM et al (2003) Expression of the human cachexia-associated protein (HCAP) in prostate cancer and in a prostate cancer animal model of cachexia. Int J Cancer 105:123–129

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Du F, Qian ZM et al (2008) Lipopolysaccharide induces a significant increase in expression of iron regulatory hormone hepcidin in the cortex and substantia nigra in rat brain. Endocrinology 149:3920–3925

    Article  CAS  PubMed  Google Scholar 

  • Wehkamp J, Schmid M, Stange EF (2007) Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr Opin Gastroenterol 23:370–378

    Article  CAS  PubMed  Google Scholar 

  • Weinberg A, Krisanaprakornkit S, Dale BA (1998) Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 9:399–414

    Article  CAS  PubMed  Google Scholar 

  • Welling MM, Hiemstra PS, van den Barselaar MT et al (1998) Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest 102:1583–1590

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Wen T, Lee G et al (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147–161

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Gallo RL (2008) Antimicrobial peptides in human skin disease. Eur J Dermatol 18:11–21

    CAS  PubMed  Google Scholar 

  • Yang De, Chen Q, Schmidt AP et al (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Biragyn A, Kwak LW et al (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Liu ZH, Tewary P et al (2007) Defensin participation in innate and adaptive immunity. Curr Pharm Des 13:3131–3139

    Article  CAS  PubMed  Google Scholar 

  • Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  CAS  PubMed  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  CAS  Google Scholar 

  • Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Youdim MB, Riederer P et al (2004) Iron, brain aging and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  • Zechel S, Huber-Wittmer K, und Halbach O (2006) Distribution of the iron-regulating protein hepcidin in the murine central nervous system. J Neurosci Res 84:790–800

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Falla TJ (2009) Host defense peptides for use as potential therapeutics. Curr Opin Investig Drugs 10:164–171

    CAS  PubMed  Google Scholar 

  • Zhang G, Wu H, Shi J et al (1998) Molecular cloning and tissue expression of porcine beta-defensin-1. FEBS Lett 424:37–40

    Article  CAS  PubMed  Google Scholar 

  • Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Perkins NM, Tracey DJ et al (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105:467–479

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Schluesener.

About this article

Cite this article

Su, Y., Zhang, K. & Schluesener, H.J. Antimicrobial Peptides in the Brain. Arch. Immunol. Ther. Exp. 58, 365–377 (2010). https://doi.org/10.1007/s00005-010-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0089-7

Keywords

  • Antimicrobial peptides
  • Brain
  • Antimicrobial activity
  • Immunomodulatory activity
  • Signaling molecules