Skip to main content
Log in

Experimental Anticancer Therapy with Vascular-disruptive Peptide and Liposome-entrapped Chemotherapeutic Agent

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Vasculature is essential for the sustained growth of solid tumors and metastases. Tumor cells surviving vascular-disruptive therapeutic intervention (especially those present at the tumor rim) can contribute to tumor regrowth. The aim was to strengthen, by carrier-mediated delivery of a chemotherapeutic, the curative effects of a bifunctional anti-vascular oligopeptide capable of inducing vascular shutdown and tumor shrinkage. For the in vitro experiments and animal therapy, ACDCRGDCFC-GG-D(KLAKLAK)2 peptide (900 μM in D-PBSA, i.e. Dulbecco’s PBS without Ca2+ and Mg2+) and size-calibrated, passively or actively targeted liposomes based on distearoylphosphatidylcholine, cholesterol, and N-carbamoyl-methoxypolyethyleneglycol coupled to distearoylphosphatidylethanolamine (PEG–DSPE) and containing gradient-entrapped doxorubicin were used. The KB (human nasopharyngeal carcinoma) cell line overexpressing folate receptors was used in the fluorescence studies of liposomal uptake. The B16-F10 melanoma cell line was used for confirming, by flow cytometry and confocal microscopy, doxorubicin intracellular transfer as well as to induce experimental tumors in C57BL/6 mice. Animal therapy was achieved with injections of vascular-disrupting peptide, doxorubicin-loaded liposomes, or alternating combined therapy. The results (tumor growth inhibition and survival) were compared using the Mann–Whitney U test and the log-rank test. Necrosis in H&E-stained tumor sections was assessed microscopically by pathologists. Treatment of C57BL/6 mice bearing B16-F10 experimental tumors with a combination of vascular-disruptive peptide and doxorubicin-carrying pegylated liposomes (either passively targeted liposomes (PTL) or folate receptor targeted) gave better therapeutic effects when tumor development was re-challenged with a second cycle of combined therapy. Marked inhibition of tumor growth and a statistically significant extension of the lifespan of the treated mice were observed when the re-challenge involved the use of folate receptor-targeted liposomes (FTL). Anticancer therapy involving vascular-disruptive peptide and doxorubicin delivered via pegylated folate receptor-targeted liposomes is more effective than either monotherapy, especially when tumor growth is re-challenged with the therapeutic combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham SA, Waterhouse DN, Mayer LD et al (2005) The liposomal formulation of doxorubicin. Methods Enzymol 391:71–97

    Article  CAS  PubMed  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763

    Article  CAS  PubMed  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  CAS  PubMed  Google Scholar 

  • Banciu M, Schiffelers RM, Storm G (2008) Investigation into the role of tumor-associated macrophages in the antitumor activity of doxil. Pharm Res 25:1948–1955

    Article  CAS  PubMed  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  • Browder T, Butterfield CE, Kräling BM et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:878–1886

    Google Scholar 

  • Denekamp J (1984) Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol 23:217–225

    Article  CAS  PubMed  Google Scholar 

  • Denekamp J (1993) Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66:181–196

    Article  CAS  PubMed  Google Scholar 

  • Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950

    Article  CAS  PubMed  Google Scholar 

  • Eliaz RE, Szoka FC Jr (2001) Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 61:2592–2601

    CAS  PubMed  Google Scholar 

  • Ellerby HM, Arap W, Ellerby LM et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumours are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1996) New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 32A:2534–2539

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Horowitz AT, Goren D et al (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10:289–298

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Tzemach D, Mark L, Bronstein M, Horowitz AT (2002) Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J Drug Target 10:539–548

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Isacson R, Rosengarten O et al (2008) An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 61:695–702

    Article  CAS  PubMed  Google Scholar 

  • Goren D, Horowitz AT, Tzemach D et al (2000) Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 6:1947–1957

    Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  • Horsman MR, Siemann DW (2006) Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 66:11520–11539

    Article  CAS  PubMed  Google Scholar 

  • Huwyler J, Drewe J, Krähenbühl S (2008) Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 3:21–29

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS (2000) Tumor angiogenesis: past, present and the new future. Carcinogenesis 21:505–515

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS (2001) Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results. J Clin Oncol 19(18 suppl):45S–49S

    CAS  PubMed  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  CAS  PubMed  Google Scholar 

  • Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    CAS  PubMed  Google Scholar 

  • Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1233:134–144

    Article  PubMed  Google Scholar 

  • Levine AM, Tulpule A, Espina B et al (2004) Liposome-encapsulated doxorubicin in combination with standard agents (cyclophosphamide, vincristine, prednisone) in patients with newly diagnosed AIDS-related non-Hodgkin’s lymphoma: results of therapy and correlates of response. J Clin Oncol 22:2662–2670

    Article  CAS  PubMed  Google Scholar 

  • Lu WL, Qi XR, Zhang Q et al (2004) A pegylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug. J Pharmacol Sci 95:381–389

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Waxman DJ (2009) Dominant effect of antiangiogenesis in combination therapy involving cyclophosphamide and axitinib. Clin Cancer Res 15:578–588

    Article  CAS  PubMed  Google Scholar 

  • Madden TD, Harrigan PR, Tai LC et al (1990) The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids 53:37–46

    Article  CAS  PubMed  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  • Mitrus I, Delić K, Wróbel N et al (2006) Combination of IL-12 gene therapy and CTX chemotherapy inhibits growth of primary B16(F10) melanoma tumors in mice. Acta Biochim Pol 53:357–360

    CAS  PubMed  Google Scholar 

  • Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    Article  CAS  PubMed  Google Scholar 

  • Scappaticci FA (2002) Mechanisms and future directions for angiogenesis-based cancer therapies. J Clin Oncol 20:3906–3927

    Article  CAS  PubMed  Google Scholar 

  • Sharma US, Sharma A, Chau RI et al (1997) Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm Res 14:992–998

    Article  CAS  PubMed  Google Scholar 

  • Siemann DW, Rojiani AM (2005) The vascular disrupting agent ZD6126 shows increased tumor efficacy and enhanced radiation response in large, advanced tumors. Int J Radiat Oncol Biol Phys 62:846–853

    CAS  PubMed  Google Scholar 

  • Siemann DW, Chaplin DJ, Horsman MR (2004) Vascular-targeting therapies for treatment of malignant disease. Cancer 100:2491–2499

    Article  CAS  PubMed  Google Scholar 

  • Smolarczyk R, Cichoń T, Graja K et al (2006) Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse B16(F10) melanoma model. Acta Biochim Pol 53:801–805

    CAS  PubMed  Google Scholar 

  • Soloman R, Gabizon AA (2008) Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymphoma Myeloma 8:21–32

    Article  PubMed  Google Scholar 

  • Szala S (2004) Two-domain vascular disruptive agents in cancer therapy. Curr Cancer Drug Targets 4:501–509

    Article  CAS  PubMed  Google Scholar 

  • Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    Article  PubMed  Google Scholar 

  • Tozer GM, Kanthou C, Parkins C et al (2002) The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 83:21–38

    Article  CAS  PubMed  Google Scholar 

  • Verheul HM, Voest EE, Schlingemann RO (2004) Are tumours angiogenesis-dependent? J Pathol 202:5–13

    Article  CAS  PubMed  Google Scholar 

  • Zhou R, Mazurchuk R, Straubinger RM (2002) Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model. Cancer Res 62:2561–2566

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Higher Education (Grant No. 2 P05A 074 28 and Commissioned Grant No. PBZ-KBN-091/P05/2003), Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Sochanik.

About this article

Cite this article

Sochanik, A., Mitrus, I., Smolarczyk, R. et al. Experimental Anticancer Therapy with Vascular-disruptive Peptide and Liposome-entrapped Chemotherapeutic Agent. Arch. Immunol. Ther. Exp. 58, 235–245 (2010). https://doi.org/10.1007/s00005-010-0077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0077-y

Keywords

Navigation