Skip to main content

Advertisement

Log in

Regulatory T Cell as a Target for Cancer Therapy

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Advances in our understanding of CD4+CD25+Foxp3+ regulatory T cells (TRegs) enabled the characterization of their activities in maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. Ironically, an effective action of these cells during tumor development can limit beneficial responses by suppressing immunity and limiting antitumor resistance, whereas one of the main functions of the immune system is to eliminate malignant cells. During the last years, the immunological role, mechanism of action, and clinical importance of these cells were profoundly characterized and the relationship between this subset of lymphocytes and cancerous cells arises as a key factor that influences tumor development. Recent insights obtained from clinical studies and experimental mouse models expand our perception of the potential role of TRegs in cancer treatment. In this review we describe the basic mechanisms of TReg origin and differentiation, their potential role in cancer, as well as the future perspectives concerning the modulation of these cells as a potential approach for anticancer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Airoldi S, Lualdi S, Bruno L et al (2003) Expression of co-stimulatory molecules in human neuroblastoma. Evidence that CD40+ neuroblastoma cells undergo apoptosis following interaction with CD40L. Br J Cancer 88:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Alam SM, Travers PJ, Wung JL et al (1996) T-cell-receptor affinity and thymocytes positive selection. Nature 381:616–620

    Article  CAS  PubMed  Google Scholar 

  • Attia P, Maker AV, Haworth LR et al (2005) Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J Immunother 6:582–592

    Article  Google Scholar 

  • Audia S, Nicolas A, Cathelin D et al (2007) Increase of CD4+CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+T lymphocytes. Clin Exp Immunol 150:523–530

    Article  CAS  PubMed  Google Scholar 

  • Bacha P, Williams DP, Waters C et al (1988) Interleukin 2 receptor-targeted cytotoxicity. Interleukin 2 receptor-mediated action of a diphtheria toxin-related interleukin 2 fusion protein. J Exp Med 167:612–622

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5:296–306

    Article  CAS  PubMed  Google Scholar 

  • Bennett CL, Christie J, Ramsdell F et al (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27:20–21

    Article  CAS  PubMed  Google Scholar 

  • Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 161:69–80

    Article  Google Scholar 

  • Beyer M, Kochanek M, Darabi K et al (2005) Reduced frequencies and suppressive function of CD4+ CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 6:2018–2025

    Article  CAS  Google Scholar 

  • Błach-Olszewska Z (2005) Innate immunity: cells, receptors, and signaling pathways. Arch Immunol Ther Exp 53:245–253

    Google Scholar 

  • Bluestone JA, Abbas AK (2003) Natural versus adaptive regulatory T cells. Nat Rev Immunol 3:253–257

    Article  CAS  PubMed  Google Scholar 

  • Borgulya P, Kishi H, Muller U et al (1991) Development of CD4 and CD8 lineage of T cells: instruction versus selection. EMBO J 10:913–918

    CAS  PubMed  Google Scholar 

  • Bosselut R (2004) CD4/CD8-Lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol 4:529–540

    Article  CAS  PubMed  Google Scholar 

  • Brunkow ME, Jeffery EW, Hjerrild KA et al (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27:68–73

    Article  CAS  PubMed  Google Scholar 

  • Camacho LH, Antonia S, Sosman J et al (2009) Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 27:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27:635–646

    Article  CAS  PubMed  Google Scholar 

  • Chambers CA, Kuhns MS, Egen JG et al (2001) CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    Article  CAS  PubMed  Google Scholar 

  • Coulie PG, Connerotte T (2005) Human tumor-specific T lymphocytes: does function matter more than number? Curr Opin Immunol 17:320–325

    Article  CAS  PubMed  Google Scholar 

  • Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  CAS  PubMed  Google Scholar 

  • De Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  CAS  Google Scholar 

  • Egerton M, Scollay R, Shortman K (1990) Kinetics of mature T-cell development in the thymus. Proc Natl Acad Sci USA 87:2579–2582

    Article  CAS  PubMed  Google Scholar 

  • Feuerer M, Hill JA, Mathis D et al (2009) Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol 10:689–695

    Article  CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  CAS  PubMed  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22:329–341

    Article  CAS  PubMed  Google Scholar 

  • Frankel AE, Fleming DR, Hall PD et al (2003) A phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin Cancer Res 9(10 Pt 1):3555–3561

    Google Scholar 

  • Galustian C, Meyer B, Labarthe MC et al (2009) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045

    Article  CAS  PubMed  Google Scholar 

  • Gavin MA, Torgerson TR, Houston E et al (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103:6659–6664

    Article  CAS  PubMed  Google Scholar 

  • Gerena-Lewis M, Crawford J, Bonomi P et al (2009) A Phase II trial of denileukin diftitox in patients with previously treated advanced non-small cell lung cancer. Am J Clin Oncol 32:269–273

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Terme M et al (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  CAS  PubMed  Google Scholar 

  • Gondek DC, Lu LF, Quezada SA et al (2005) Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforinin dependent mechanism. J Immunol 174:1783–1786

    CAS  PubMed  Google Scholar 

  • Hamerman JA, Ogasawara K, Lanier LL (2005) NK cells in innate immunity. Curr Opin Immunol 17:29–35

    Article  CAS  PubMed  Google Scholar 

  • Harris M (2004) Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 5:292–302

    Article  CAS  PubMed  Google Scholar 

  • Hawrylowicz CM, O’Garra A (2005) Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5:271–283

    Article  CAS  PubMed  Google Scholar 

  • Hilchey SP, De A, Rimsza LM et al (2007) Follicular lymphoma intratumoral CD4+ CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+. J Immunol 178:4051–4406

    CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Hsieh CS, Zheng Y, Liang Y et al (2006) An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 7:401–410

    Article  CAS  PubMed  Google Scholar 

  • Huesmann M, Scott B, Kisielow P et al (1991) Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66:533–540

    Article  CAS  PubMed  Google Scholar 

  • Imada A, Shijubo N, Kojima H et al (2000) Mast cells correlate with angiogenesis and poor outcome in stage I lung adenocarcinoma. Eur Respir J 15:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Javia LR, Rosenberg SA (2003) CD4+ CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 26:85–93

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Iizuka K, Aguila HL et al (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97:2731–2736

    Article  CAS  PubMed  Google Scholar 

  • Kisielow P, Teh HS, Bluthmann H et al (1988) Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335:730–733

    Article  CAS  PubMed  Google Scholar 

  • Kreitman RJ, Batra JK, Seetharam S et al (1993) Single-chain immunotoxin fusions between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconjug Chem 4:112–120

    Article  CAS  PubMed  Google Scholar 

  • Kreitman RJ, Wilson WH, Robbins D et al (1999) Responses in refractory hairy cell leukemia to a recombinant immunotoxin. Blood 94:3340–3348

    CAS  PubMed  Google Scholar 

  • Kreitman RJ, Wilson WH, White JD et al (2000) Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 18:1622–1636

    CAS  PubMed  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  • LeMaistre CF, Saleh MN, Kuzel TM et al (1998) Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin-2. Blood 91:399–405

    CAS  PubMed  Google Scholar 

  • Li H, Yu JP, Cao S et al (2007) CD4+CD25+ regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. J Clin Immunol 27:317–326

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Haribhai D, Relland LM (2007) Regulatory T cell development in the absence of functional Foxp3. Nat Immunol 8:359–368

    Article  CAS  PubMed  Google Scholar 

  • Litzinger MT, Fernando R, Curiel TJ et al (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110:3192–3201

    Article  CAS  PubMed  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    CAS  PubMed  Google Scholar 

  • Mahic M, Yaqub S, Bryn T et al (2008) Differentiation of naïve CD4+ T cells into CD4+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. J Leukoc Biol 83:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  • McHugh RS, Whitters MJ, Piccirillo CA et al (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323

    Article  CAS  PubMed  Google Scholar 

  • Ménard C, Ghiringhelli F, Roux S et al (2008) Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: surrogate marker of efficacy of tremelimumab? Clin Cancer Res 14:5242–5249

    Article  PubMed  Google Scholar 

  • Nair S, Boczkowski D, Fassnacht M et al (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644

    Article  CAS  PubMed  Google Scholar 

  • North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor induced suppressor T cells. J Exp Med 155:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • North RJ, Bursuker I (1984) Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1–2− suppressor T cells down-regulate the generation of Ly-1–2+ effector T cells. J Exp Med 159:1295–1311

    Article  CAS  PubMed  Google Scholar 

  • Onizuka S, Tawara I, Shimizu J et al (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133

    CAS  PubMed  Google Scholar 

  • Pacholczyk R, Ignatowicz H, Kraj P et al (2006) Origin and T cell receptor diversity of Foxp3+CD4+CD25+T cells. Immunity 25:249–259

    Article  CAS  PubMed  Google Scholar 

  • Pandiyan P, Zheng L, Ishihara S et al (2007) CD4 + CD25 + Foxp3 + regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4 + T cells. Nat Immunol 8:1353–1362

    Article  CAS  PubMed  Google Scholar 

  • Petersen RP, Campa MJ, Sperlazza J et al (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 17:2866–2872

    Article  Google Scholar 

  • Powell DJ Jr, Felipe-Silva A, Merino MJ et al (2007) Administration of a CD25-directed immunotoxin, LMB-2, to patients with metastatic melanoma induces a selective partial reduction in regulatory T cells in vivo. J Immunol 179:4919–4928

    CAS  PubMed  Google Scholar 

  • Raulet DH (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Ribas A, Comin-Anduix B, Economou JS (2009) Intratumoral immune cell infiltrates, FoxP3, and indoleamine 2, 3-dioxygenase in patients with melanoma undergoing CTLA4 blockade. Clin Cancer Res 15:390–399

    Article  CAS  PubMed  Google Scholar 

  • Rubtsov YP, Rasmussen JP, Chi EY et al (2008) Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28:546–558

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Shimizu J et al (2001) Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182:18–32

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  CAS  PubMed  Google Scholar 

  • Seliger B, Cabrera T, Garrido F et al (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    CAS  PubMed  Google Scholar 

  • Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463

    Article  CAS  PubMed  Google Scholar 

  • Stevanovic S (2002) Identification of tumour-associated T-cell epitopes for vaccine development. Nat Rev Cancer 2:514–520

    Article  CAS  PubMed  Google Scholar 

  • Strauss L, Bergmann C, Szczepanski M et al (2007) A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin 10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354

    Article  CAS  PubMed  Google Scholar 

  • Teh HS, Kisielow P, Scott B et al (1988) Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335:229–233

    Article  CAS  PubMed  Google Scholar 

  • Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  CAS  PubMed  Google Scholar 

  • Tokuno K, Hazama S, Yoshino S et al (2009) Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res 29:1527–1532

    PubMed  Google Scholar 

  • Tzankov A, Meier C, Hirschmann P et al (2008) Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 93:193–200

    Article  CAS  PubMed  Google Scholar 

  • van der Most RG, Currie AJ, Mahendran S et al (2009) Tumor eradication after cyclophosphamide depends on concurrent depletion of regulatory T cells: a role for cycling TNFR2-expressing eVector-suppressor T cells in limiting effective chemotherapy. Cancer Immunol Immunother 58:1219–1228

    Google Scholar 

  • Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532

    Article  CAS  PubMed  Google Scholar 

  • von Allmen CE, Schmitz N, Bauer M et al (2009) Secretory phospholipase A2-IID is an effector molecule of CD4+CD25+ regulatory T cells. Proc Natl Acad Sci USA 106:11673–11678

    Article  Google Scholar 

  • Von Boehmer H (1994) Positive selection of lymphocytes. Cell 76:219–228

    Article  Google Scholar 

  • Von Boehmer H (1996) CD4/CD6 lineage commitment back to instruction? J Exp Med 183:713–715

    Article  Google Scholar 

  • Weber JS (2008) Overcoming immunologic tolerance to melanoma: targeting CTLA-4 with ipilimumab (MDX-010). Oncologist 13(Suppl 4):16–25

    Article  CAS  PubMed  Google Scholar 

  • Weber JS, O’Day S, Urba W (2008) Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26:5950–5956

    Article  CAS  PubMed  Google Scholar 

  • Weller M, Fontana A (1995) The failure of current immunotherapy for malignant glioma tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res Brain Res Rev 21:128–151

    Article  CAS  PubMed  Google Scholar 

  • Wildin RS, Ramsdell F, Peake J et al (2001) X-linked nenonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27:18–20

    Article  CAS  PubMed  Google Scholar 

  • Wing K, Onishi Y, Prieto-Martin P et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Sakaguchi S (2006) Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 16:115–123

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Hughes M, Kammula U et al (2007) Ipilimumab (anti-CTLA-4 antibody) causes regression of metastatic renal cell cancer 0061ssociated with enteritis and hypophysitis. J Immunother 30:825–830

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D et al (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Ding T, Pan W et al (2009a) Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int J Cancer 125:1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009b) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    Article  CAS  PubMed  Google Scholar 

  • Ziegler SF (2006) FOXP3: of mice and men. Annu Rev Immunol 24:209–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cesar Cunegundes Guimarães.

About this article

Cite this article

de Rezende, L.C.D., Silva, I.V., Rangel, L.B.A. et al. Regulatory T Cell as a Target for Cancer Therapy. Arch. Immunol. Ther. Exp. 58, 179–190 (2010). https://doi.org/10.1007/s00005-010-0075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0075-0

Keywords

Navigation