Skip to main content

Advertisement

Log in

B Cells: From Early Development to Regulating Allergic Diseases

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

B lymphocytes are characterized by a unique and highly specialized developmental pathway that is responsible for their vast phenotypic and function diversity. B cell development is strictly regulated to ensure sufficient specific humoral immunity while at the same time avoiding any errors that would compromise B cell functionality. The generation and maintenance of mature B cells from the constant flux of bone marrow progenitors is a complex process that is generally poorly understood, although great progress has been made in recent years. B cells have for long been considered mainly as antibody-producing cells and therefore believed to play an important role in the pathophysiology of allergic diseases, primarily through their ability to produce IgE antibodies. However, recent findings have revealed new aspects of their role in immune responses that place them again under the spotlight as important immune regulators, independent of antibody production. This review focuses on the developmental processes responsible for the numerous phenotypes and functions of the B-lymphocyte pool and the different aspects of effector B cell functionality in the context of allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cell

BAFF:

B cell-activating factor of the TNF family

BcR:

B cell receptor

BM:

Bone marrow

CLPs:

Common lymphoid progenitors

DC:

Dendritic cell

EBF1:

Early B cell factor 1

ELPs:

Early lymphoid progenitors

EPLMs:

Early progenitors with lymphoid and myeloid potential

Flt3:

FMS-related tyrosine kinase 3

FO:

Follicular

GC:

Germinal center

HSCs:

Hematopoietic stem cells

Ig:

Immunoglobulin

LMPPs:

Lymphoid-primed multipotent progenitors

MPPs:

Multipotent progenitors

MZ:

Marginal zone

Pax5:

Paired box protein 5

SCA1:

Stem cell antigen 1

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

VCAM-1:

Vascular cell adhesion molecule-1

Xid:

X-linked immunodeficiency

References

  • Admyre C, Bohle B, Johansson SM et al (2007) B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. J Allergy Clin Immunol 120:1418–1424

    CAS  PubMed  Google Scholar 

  • Adolfsson J, Borge OJ, Bryder D et al (2001) Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15:659–669

    CAS  PubMed  Google Scholar 

  • Adolfsson J, Mansson R, Buza-Vidas N et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306

    CAS  PubMed  Google Scholar 

  • Akdis CA, Blesken T, Akdis M et al (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102:98–106

    CAS  PubMed  Google Scholar 

  • Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27:190–202

    CAS  PubMed  Google Scholar 

  • Allman D, Li J, Hardy RR (1999) Commitment to the B lymphoid lineage occurs before DH-JH recombination. J Exp Med 189:735–740

    CAS  PubMed  Google Scholar 

  • Allman D, Lindsley RC, DeMuth W et al (2001) Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J Immunol 167:6834–6840

    CAS  PubMed  Google Scholar 

  • Ansel KM, Harris RB, Cyster JG (2002) CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 16:67–76

    CAS  PubMed  Google Scholar 

  • Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    CAS  PubMed  Google Scholar 

  • Arnaboldi PM, Behr MJ, Metzger DW (2005) Mucosal B cell deficiency in IgA−/− mice abrogates the development of allergic lung inflammation. J Immunol 175:1276–1285

    CAS  PubMed  Google Scholar 

  • Ashkar S, Weber GF, Panoutsakopoulou V et al (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287:860–864

    CAS  PubMed  Google Scholar 

  • Avecilla ST, Hattori K, Heissig B et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71

    CAS  PubMed  Google Scholar 

  • Aydar Y, Sukumar S, Szakal AK et al (2005) The influence of immune complex-bearing follicular dendritic cells on the IgM response, Ig class switching, and production of high affinity IgG. J Immunol 174:5358–5366

    CAS  PubMed  Google Scholar 

  • Bain G, Maandag EC, Izon DJ et al (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892

    CAS  PubMed  Google Scholar 

  • Balciunaite G, Ceredig R, Massa S et al (2005) A B220+ CD117+ CD19− hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur J Immunol 35:2019–2030

    CAS  PubMed  Google Scholar 

  • Barr TA, Brown S, Ryan G et al (2007) TLR-mediated stimulation of APC: distinct cytokine responses of B cells and dendritic cells. Eur J Immunol 37:3040–3053

    CAS  PubMed  Google Scholar 

  • Batten M, Groom J, Cachero TG et al (2000) BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 192:1453–1466

    CAS  PubMed  Google Scholar 

  • Bhandoola A, von Boehmer H, Petrie HT et al (2007) Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26:678–689

    CAS  PubMed  Google Scholar 

  • Buckley RH, Fiscus SA (1975) Serum IgD and IgE concentrations in immunodeficiency diseases. J Clin Invest 55:157–165

    CAS  PubMed  Google Scholar 

  • Buhlmann JE, Foy TM, Aruffo A et al (1995) In the absence of a CD40 signal, B cells are tolerogenic. Immunity 2:645–653

    CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    CAS  PubMed  Google Scholar 

  • Cariappa A, Boboila C, Moran ST et al (2007) The recirculating B cell pool contains two functionally distinct, long-lived, posttransitional, follicular B cell populations. J Immunol 179:2270–2281

    CAS  PubMed  Google Scholar 

  • Carvalho TL, Mota-Santos T, Cumano A et al (2001) Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7(−/)− mice. J Exp Med 194:1141–1150

    CAS  PubMed  Google Scholar 

  • Cassell DJ, Schwartz RH (1994) A quantitative analysis of antigen-presenting cell function: activated B cells stimulate naive CD4 T cells but are inferior to dendritic cells in providing costimulation. J Exp Med 180:1829–1840

    CAS  PubMed  Google Scholar 

  • Castigli E, Wilson SA, Scott S et al (2005) TACI and BAFF-R mediate isotype switching in B cells. J Exp Med 201:35–39

    CAS  PubMed  Google Scholar 

  • Ceredig R, Rolink AG, Brown G (2009) Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol 9:293–300

    CAS  PubMed  Google Scholar 

  • Chesnut RW, Grey HM (1981) Studies on the capacity of B cells to serve as antigen-presenting cells. J Immunol 126:1075–1079

    CAS  PubMed  Google Scholar 

  • Chowdhury D, Sen R (2003) Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18:229–241

    CAS  PubMed  Google Scholar 

  • Cobaleda C, Jochum W, Busslinger M (2007) Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 449:473–477

    CAS  PubMed  Google Scholar 

  • Corcoran AE, Smart FM, Cowling RJ et al (1996) The interleukin-7 receptor alpha chain transmits distinct signals for proliferation and differentiation during B lymphopoiesis. EMBO J 15:1924–1932

    CAS  PubMed  Google Scholar 

  • Dakic A, Wu L, Nutt SL (2007) Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol 28:108–114

    CAS  PubMed  Google Scholar 

  • DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441

    CAS  PubMed  Google Scholar 

  • DeKoter RP, Lee HJ, Singh H (2002) PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16:297–309

    CAS  PubMed  Google Scholar 

  • DeKoter RP, Kamath MB, Houston IB (2007) Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood Cells Mol Dis 39:316–320

    CAS  PubMed  Google Scholar 

  • Ding C, Yan J (2007) Regulation of autoreactive B cells: checkpoints and activation. Arch Immunol Ther Exp 55:83–89

    CAS  Google Scholar 

  • Dreskin SC, Goldsmith PK, Strober W et al (1987) Metabolism of immunoglobulin E in patients with markedly elevated serum immunoglobulin E levels. J Clin Invest 79:1764–1772

    CAS  PubMed  Google Scholar 

  • Evans DE, Munks MW, Purkerson JM et al (2000) Resting B lymphocytes as APC for naive T lymphocytes: dependence on CD40 ligand/CD40. J Immunol 164:688–697

    CAS  PubMed  Google Scholar 

  • Fagraeus A (1948) The plasma cellular reaction and its relation to the formation of antibodies in vitro. J Immunol 58:1–13

    CAS  PubMed  Google Scholar 

  • Fahy JV, Cockcroft DW, Boulet LP et al (1999) Effect of aerosolized anti-IgE (E25) on airway responses to inhaled allergen in asthmatic subjects. Am J Respir Crit Care Med 160:1023–1027

    CAS  PubMed  Google Scholar 

  • Fiorentino DF, Zlotnik A, Mosmann TR et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147:3815–3822

    CAS  PubMed  Google Scholar 

  • Flaishon L, Becker-Herman S, Hart G et al (2004) Expression of the chemokine receptor CCR2 on immature B cells negatively regulates their cytoskeletal rearrangement and migration. Blood 104:933–941

    CAS  PubMed  Google Scholar 

  • Fleming WH, Alpern EJ, Uchida N et al (1993) Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol 122:897–902

    CAS  PubMed  Google Scholar 

  • Funk PE, Stephan RP, Witte PL (1995) Vascular cell adhesion molecule 1-positive reticular cells express interleukin-7 and stem cell factor in the bone marrow. Blood 86:2661–2671

    CAS  PubMed  Google Scholar 

  • Gardby E, Chen XJ, Lycke NY (2001) Impaired CD40-signalling in CD19-deficient mice selectively affects Th2-dependent isotype switching. Scand J Immunol 53:13–23

    CAS  PubMed  Google Scholar 

  • Gaudin E, Hao Y, Rosado MM et al (2004) Positive selection of B cells expressing low densities of self-reactive BCRs. J Exp Med 199:843–853

    CAS  PubMed  Google Scholar 

  • Georgopoulos K, Bigby M, Wang JH et al (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79:143–156

    CAS  PubMed  Google Scholar 

  • Goldblatt D, Morgan G, Seymour N (1989) The clinical manifestations of IgG subclass deficiency. In: Levinsky RJ (ed) IgG subclass deficiencies. Royal Society of Medicin Services, London

    Google Scholar 

  • Goldstein MF, Goldstein AL, Dunsky EH et al (2006) Selective IgM immunodeficiency: retrospective analysis of 36 adult patients with review of the literature. Ann Allergy Asthma Immunol 97:717–730

    CAS  PubMed  Google Scholar 

  • Goodnow CC, Adelstein S, Basten A (1990) The need for central and peripheral tolerance in the B cell repertoire. Science 248:1373–1379

    CAS  PubMed  Google Scholar 

  • Gould HJ, Sutton BJ, Beavil AJ et al (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579–628

    CAS  PubMed  Google Scholar 

  • Gross JA, Dillon SR, Mudri S et al (2001) TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 15:289–302

    CAS  PubMed  Google Scholar 

  • Grunig G, Corry DB, Leach MW et al (1997) Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J Exp Med 185:1089–1099

    CAS  PubMed  Google Scholar 

  • Guo B, Tumang JR, Rothstein TL (2009) B cell receptor crosstalk: B cells express osteopontin through the combined action of the alternate and classical BCR signaling pathways. Mol Immunol 46:587–591

    CAS  PubMed  Google Scholar 

  • Hagman J, Lukin K (2005) Early B-cell factor “pioneers” the way for B-cell development. Trends Immunol 26:455–461

    CAS  PubMed  Google Scholar 

  • Hajoui O, Janani R, Tulic M et al (2004) Synthesis of IL-13 by human B lymphocytes: regulation and role in IgE production. J Allergy Clin Immunol 114:657–663

    CAS  PubMed  Google Scholar 

  • Hardy RR (2006) B-1 B cell development. J Immunol 177:2749–2754

    CAS  PubMed  Google Scholar 

  • Hardy RR, Carmack CE, Shinton SA et al (1991) Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173:1213–1225

    CAS  PubMed  Google Scholar 

  • Harris DP, Haynes L, Sayles PC et al (2000) Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 1:475–482

    CAS  PubMed  Google Scholar 

  • Harris DP, Goodrich S, Mohrs K et al (2005) Cutting edge: the development of IL-4-producing B cells (B effector 2 cells) is controlled by IL-4, IL-4 receptor alpha, and Th2 cells. J Immunol 175:7103–7107

    CAS  PubMed  Google Scholar 

  • Herzog S, Reth M, Jumaa H (2009) Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9:195–205

    CAS  PubMed  Google Scholar 

  • Heufler C, Koch F, Stanzl U et al (1996) Interleukin-12 is produced by dendritic cells and mediates T helper 1 development as well as interferon-gamma production by T helper 1 cells. Eur J Immunol 26:659–668

    CAS  PubMed  Google Scholar 

  • Hirokawa S, Sato H, Kato I et al (2003) EBF-regulating Pax5 transcription is enhanced by STAT5 in the early stage of B cells. Eur J Immunol 33:1824–1829

    CAS  PubMed  Google Scholar 

  • Holmes ML, Carotta S, Corcoran LM et al (2006) Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev 20:933–938

    CAS  PubMed  Google Scholar 

  • Igarashi H, Gregory SC, Yokota T et al (2002) Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17:117–130

    CAS  PubMed  Google Scholar 

  • Ito K, Hirao A, Arai F et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002

    CAS  PubMed  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    CAS  PubMed  Google Scholar 

  • Izon D, Rudd K, DeMuth W et al (2001) A common pathway for dendritic cell and early B cell development. J Immunol 167:1387–1392

    CAS  PubMed  Google Scholar 

  • Jacquot S (2000) CD27/CD70 interactions regulate T dependent B cell differentiation. Immunol Res 21:23–30

    CAS  PubMed  Google Scholar 

  • Johansson-Lindbom B, Borrebaeck CA (2002) Germinal center B cells constitute a predominant physiological source of IL-4: implication for Th2 development in vivo. J Immunol 168:3165–3172

    CAS  PubMed  Google Scholar 

  • Jutel M, Akdis M, Budak F et al (2003) IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205–1214

    CAS  PubMed  Google Scholar 

  • Kantor A (1991) A new nomenclature for B cells. Immunol Today 12:388

    CAS  PubMed  Google Scholar 

  • Karasuyama H, Rolink A, Melchers F (1996) Surrogate light chain in B cell development. Adv Immunol 63:1–41

    CAS  PubMed  Google Scholar 

  • Kaufman HS, Hobbs JR (1970) Immunoglobulin deficiencies in an atopic population. Lancet 2:1061–1063

    CAS  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    CAS  PubMed  Google Scholar 

  • Kikuchi K, Lai AY, Hsu CL et al (2005) IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J Exp Med 201:1197–1203

    CAS  PubMed  Google Scholar 

  • Kirstetter P, Thomas M, Dierich A et al (2002) Ikaros is critical for B cell differentiation and function. Eur J Immunol 32:720–730

    CAS  PubMed  Google Scholar 

  • KleinJan A, Vinke JG, Severijnen LW et al (2000) Local production and detection of (specific) IgE in nasal B-cells and plasma cells of allergic rhinitis patients. Eur Respir J 15:491–497

    CAS  PubMed  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    CAS  PubMed  Google Scholar 

  • Kondo M, Wagers AJ, Manz MG et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806

    CAS  PubMed  Google Scholar 

  • Kozmik Z, Wang S, Dorfler P et al (1992) The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol Cell Biol 12:2662–2672

    CAS  PubMed  Google Scholar 

  • Lai AY, Lin SM, Kondo M (2005) Heterogeneity of Flt3-expressing multipotent progenitors in mouse bone marrow. J Immunol 175:5016–5023

    CAS  PubMed  Google Scholar 

  • Lam KP, Kuhn R, Rajewsky K (1997) In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90:1073–1083

    CAS  PubMed  Google Scholar 

  • Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981

    CAS  PubMed  Google Scholar 

  • Laslo P, Spooner CJ, Warmflash A et al (2006) Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–766

    CAS  PubMed  Google Scholar 

  • Laslo P, Pongubala JM, Lancki DW et al (2008) Gene regulatory networks directing myeloid and lymphoid cell fates within the immune system. Semin Immunol 20:228–235

    CAS  PubMed  Google Scholar 

  • Li YS, Hayakawa K, Hardy RR (1993) The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med 178:951–960

    CAS  PubMed  Google Scholar 

  • Li YS, Wasserman R, Hayakawa K, Hardy RR (1996) Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5:527–535

    CAS  PubMed  Google Scholar 

  • Lin H, Grosschedl R (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376:263–267

    CAS  PubMed  Google Scholar 

  • Lindell DM, Berlin AA, Schaller MA et al (2008) B cell antigen presentation promotes Th2 responses and immunopathology during chronic allergic lung disease. PLoS One 3:e3129

    PubMed  Google Scholar 

  • Linton PJ, Bautista B, Biederman E et al (2003) Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197:875–883

    CAS  PubMed  Google Scholar 

  • Liu Q, Liu Z, Rozo CT et al (2007) The role of B cells in the development of CD4 effector T cells during a polarized Th2 immune response. J Immunol 179:3821–3830

    CAS  PubMed  Google Scholar 

  • Loder F, Mutschler B, Ray RJ et al (1999) B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J Exp Med 190:75–89

    CAS  PubMed  Google Scholar 

  • Lopes-Carvalho T, Kearney JF (2004) Development and selection of marginal zone B cells. Immunol Rev 197:192–205

    PubMed  Google Scholar 

  • Lu L, Chaudhury P, Osmond DG (1999) Regulation of cell survival during B lymphopoiesis: apoptosis and Bcl-2/Bax content of precursor B cells in bone marrow of mice with altered expression of IL-7 and recombinase-activating gene-2. J Immunol 162:1931–1940

    CAS  PubMed  Google Scholar 

  • Ludviksson BR, Eiriksson TH, Ardal B et al (1992) Correlation between serum immunoglobulin A concentrations and allergic manifestations in infants. J Pediatr 121:23–27

    CAS  PubMed  Google Scholar 

  • Lundy SK (2009) Killer B lymphocytes: the evidence and the potential. Inflamm Res (in press)

  • Lundy SK, Berlin AA, Martens TF et al (2005) Deficiency of regulatory B cells increases allergic airway inflammation. Inflamm Res 54:514–521

    CAS  PubMed  Google Scholar 

  • Macaulay AE, DeKruyff RH, Goodnow CC et al (1997) Antigen-specific B cells preferentially induce CD4+ T cells to produce IL-4. J Immunol 158:4171–4179

    CAS  PubMed  Google Scholar 

  • Mackarehtschian K, Hardin JD, Moore KA et al (1995) Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3:147–161

    CAS  PubMed  Google Scholar 

  • Manjarrez-Orduno N, Quach TD, Sanz I (2009) B cells and immunological tolerance. J Invest Dermatol 129:278–288

    CAS  PubMed  Google Scholar 

  • Mansson R, Hultquist A, Luc S et al (2007) Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26:407–419

    PubMed  Google Scholar 

  • Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:323–335

    CAS  PubMed  Google Scholar 

  • Martin CH, Aifantis I, Scimone ML et al (2003) Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat Immunol 4:866–873

    CAS  PubMed  Google Scholar 

  • Maurer D, Fiebiger E, Reininger B et al (1998) Fc epsilon receptor I on dendritic cells delivers IgE-bound multivalent antigens into a cathepsin S-dependent pathway of MHC class II presentation. J Immunol 161:2731–2739

    CAS  PubMed  Google Scholar 

  • McCormick DP, Ammann AJ, Ishizaka K et al (1971) A study of allergy in patients with malignant lymphoma and chronic lymphocytic leukemia. Cancer 27:93–99

    CAS  PubMed  Google Scholar 

  • Medina KL, Garrett KP, Thompson LF et al (2001) Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nat Immunol 2:718–724

    CAS  PubMed  Google Scholar 

  • Medina KL, Pongubala JM, Reddy KL et al (2004) Assembling a gene regulatory network for specification of the B cell fate. Dev Cell 7:607–617

    CAS  PubMed  Google Scholar 

  • Meiler F, Zumkehr J, Klunker S et al (2008) In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med 205:2887–2898

    CAS  PubMed  Google Scholar 

  • Melbye M, Smedby KE, Lehtinen T et al (2007) Atopy and risk of non-Hodgkin lymphoma. J Natl Cancer Inst 99:158–166

    PubMed  Google Scholar 

  • Merrell KT, Benschop RJ, Gauld SB et al (2006) Identification of anergic B cells within a wild-type repertoire. Immunity 25:953–962

    CAS  PubMed  Google Scholar 

  • Mizoguchi A, Bhan AK (2006) A case for regulatory B cells. J Immunol 176:705–710

    CAS  PubMed  Google Scholar 

  • Morrison SJ, Wandycz AM, Hemmati HD et al (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124:1929–1939

    CAS  PubMed  Google Scholar 

  • Moser K, Tokoyoda K, Radbruch A et al (2006) Stromal niches, plasma cell differentiation and survival. Curr Opin Immunol 18:265–270

    CAS  PubMed  Google Scholar 

  • Moulin V, Andris F, Thielemans K et al (2000) B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J Exp Med 192:475–482

    CAS  PubMed  Google Scholar 

  • Mudde GC, Bheekha R, Bruijnzeel-Koomen CA (1995) Consequences of IgE/CD23-mediated antigen presentation in allergy. Immunol Today 16:80–383

    Google Scholar 

  • Muller UR (2005) Bee venom allergy in beekeepers and their family members. Curr Opin Allergy Clin Immunol 5:343–347

    PubMed  Google Scholar 

  • Myers CD (1991) Role of B cell antigen processing and presentation in the humoral immune response. FASEB J 5:2547–2553

    CAS  PubMed  Google Scholar 

  • Nagai Y, Garrett KP, Ohta S et al (2006) Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24:801–812

    CAS  PubMed  Google Scholar 

  • Nagaoka H, Gonzalez-Aseguinolaza G, Tsuji M et al (2000) Immunization and infection change the number of recombination activating gene (RAG)-expressing B cells in the periphery by altering immature lymphocyte production. J Exp Med 191:2113–2120

    CAS  PubMed  Google Scholar 

  • Nichogiannopoulou A, Trevisan M, Neben S et al (1999) Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 190:1201–1214

    CAS  PubMed  Google Scholar 

  • Nouri-Aria KT, Wachholz PA, Francis JN et al (2004) Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J Immunol 172:3252–3259

    CAS  PubMed  Google Scholar 

  • Nutt SL, Urbanek P, Rolink A et al (1997) Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev 11:476–491

    CAS  PubMed  Google Scholar 

  • Nutt SL, Morrison AM, Dorfler P et al (1998) Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 17:2319–2333

    CAS  PubMed  Google Scholar 

  • O’Riordan M, Grosschedl R (1999) Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11:21–31

    PubMed  Google Scholar 

  • Ochiai K, Wang B, Rieger A et al (1994) A review on Fc epsilon RI on human epidermal Langerhans cells. Int Arch Allergy Immunol 104(suppl 1):63–64

    CAS  PubMed  Google Scholar 

  • Oliver AM, Martin F, Kearney JF (1999) IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol 162:7198–7207

    CAS  PubMed  Google Scholar 

  • Ong YE, Menzies-Gow A, Barkans J et al (2005) Anti-IgE (omalizumab) inhibits late-phase reactions and inflammatory cells after repeat skin allergen challenge. J Allergy Clin Immunol 116:558–564

    CAS  PubMed  Google Scholar 

  • Osmond DG, Rolink A, Melchers F (1998) Murine B lymphopoiesis: towards a unified model. Immunol Today 19:65–68

    CAS  PubMed  Google Scholar 

  • Papadopoulou A, Mermiri D, Taousani S et al (2005) Bronchial hyper-responsiveness in selective IgA deficiency. Pediatr Allergy Immunol 16:495–500

    PubMed  Google Scholar 

  • Payne KJ, Medina KL, Kincade PW (1999) Loss of c-kit accompanies B-lineage commitment and acquisition of CD45R by most murine B-lymphocyte precursors. Blood 94:713–723

    CAS  PubMed  Google Scholar 

  • Pearce G, Angeli V, Randolph GJ et al (2006) Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nat Immunol 7:827–834

    CAS  PubMed  Google Scholar 

  • Perry SS, Welner RS, Kouro T et al (2006) Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. J Immunol 177:2880–2887

    CAS  PubMed  Google Scholar 

  • Pilette C, Nouri-Aria KT, Jacobson MR et al (2007) Grass pollen immunotherapy induces an allergen-specific IgA2 antibody response associated with mucosal TGF-beta expression. J Immunol 178:4658–4666

    CAS  PubMed  Google Scholar 

  • Pillai S, Cariappa A, Moran ST (2005) Marginal zone B cells. Annu Rev Immunol 23:161–196

    CAS  PubMed  Google Scholar 

  • Pistoia V (1997) Production of cytokines by human B cells in health and disease. Immunol Today 18:343–350

    CAS  PubMed  Google Scholar 

  • Plebani A, Monafo V, Ugazio AG et al (1987) Comparison of the frequency of atopic diseases in children with severe and partial IgA deficiency. Int Arch Allergy Appl Immunol 82:485–486

    CAS  PubMed  Google Scholar 

  • Poulsen LK, Hummelshoj L (2007) Triggers of IgE class switching and allergy development. Ann Med 39:440–456

    CAS  PubMed  Google Scholar 

  • Prado N, Marazuela EG, Segura E et al (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181:1519–1525

    CAS  PubMed  Google Scholar 

  • Prieyl JA, LeBien TW (1996) Interleukin 7 independent development of human B cells. Proc Natl Acad Sci USA 93:10348–10353

    CAS  PubMed  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    CAS  PubMed  Google Scholar 

  • Reynaud D, Demarco IA, Reddy KL et al (2008) Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros. Nat Immunol 9:927–936

    CAS  PubMed  Google Scholar 

  • Rice JS, Newman J, Wang C et al (2005) Receptor editing in peripheral B cell tolerance. Proc Natl Acad Sci USA 102:1608–1613

    CAS  PubMed  Google Scholar 

  • Rivera A, Chen CC, Ron N et al (2001) Role of B cells as antigen-presenting cells in vivo revisited: antigen-specific B cells are essential for T cell expansion in lymph nodes and for systemic T cell responses to low antigen concentrations. Int Immunol 13:1583–1593

    CAS  PubMed  Google Scholar 

  • Roessler S, Gyory I, Imhof S et al (2007) Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol Cell Biol 27:579–594

    CAS  PubMed  Google Scholar 

  • Sagaert X, De Wolf-Peeters C (2003) Classification of B-cells according to their differentiation status, their micro-anatomical localisation and their developmental lineage. Immunol Lett 90:179–186

    CAS  PubMed  Google Scholar 

  • Samuels J, Ng YS, Coupillaud C et al (2005) Impaired early B cell tolerance in patients with rheumatoid arthritis. J Exp Med 201:1659–1667

    CAS  PubMed  Google Scholar 

  • Schebesta M, Pfeffer PL, Busslinger M (2002) Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17:473–485

    CAS  PubMed  Google Scholar 

  • Schiemann B, Gommerman JL, Vora K et al (2001) An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293:2111–2114

    CAS  PubMed  Google Scholar 

  • Schneider P, MacKay F, Steiner V et al (1999) BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 189:1747–1756

    CAS  PubMed  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    CAS  PubMed  Google Scholar 

  • Seet CS, Brumbaugh RL, Kee BL (2004) Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J Exp Med 199:1689–1700

    CAS  PubMed  Google Scholar 

  • Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5:230–242

    CAS  PubMed  Google Scholar 

  • Sims GP, Ettinger R, Shirota Y et al (2005) Identification and characterization of circulating human transitional B cells. Blood 105:4390–4398

    CAS  PubMed  Google Scholar 

  • Singh A, Carson WF, Secor ER Jr et al (2008) Regulatory role of B cells in a murine model of allergic airway disease. J Immunol 180:7318–7326

    CAS  PubMed  Google Scholar 

  • Smith EM, Gisler R, Sigvardsson M (2002) Cloning and characterization of a promoter flanking the early B cell factor (EBF) gene indicates roles for E-proteins and autoregulation in the control of EBF expression. J Immunol 169:261–270

    CAS  PubMed  Google Scholar 

  • Smurthwaite L, Walker SN, Wilson DR et al (2001) Persistent IgE synthesis in the nasal mucosa of hay fever patients. Eur J Immunol 31:3422–3431

    CAS  PubMed  Google Scholar 

  • Souabni A, Cobaleda C, Schebesta M et al (2002) Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17:781–793

    CAS  PubMed  Google Scholar 

  • Stall AM, Adams S, Herzenberg LA et al (1992) Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann NY Acad Sci 651:33–43

    CAS  PubMed  Google Scholar 

  • Stiehm ER (2008) The four most common pediatric immunodeficiencies. J Immunotoxicol 5:227–234

    PubMed  Google Scholar 

  • Stockinger B, Zal T, Zal A et al (1996) B cells solicit their own help from T cells. J Exp Med 183:891–899

    CAS  PubMed  Google Scholar 

  • Suda T, Arai F, Hirao A (2005) Hematopoietic stem cells and their niche. Trends Immunol 26:426–433

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Ogawa A, Shimomura Y et al (2007) Inducible IL-12-producing B cells regulate Th2-mediated intestinal inflammation. Gastroenterology 133:124–136

    CAS  PubMed  Google Scholar 

  • Takhar P, Corrigan CJ, Smurthwaite L et al (2007) Class switch recombination to IgE in the bronchial mucosa of atopic and nonatopic patients with asthma. J Allergy Clin Immunol 119:213–218

    CAS  PubMed  Google Scholar 

  • Tarlinton DM, Smith KG (2000) Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory B cells in the germinal centre. Immunol Today 21:436–441

    CAS  PubMed  Google Scholar 

  • Taylor B, Fergusson DM, Mahoney GN et al (1982) Specific IgA and IgE in childhood asthma, eczema and food allergy. Clin Allergy 12:499–505

    CAS  PubMed  Google Scholar 

  • Thevenin C, Nutt SL, Busslinger M (1998) Early function of Pax5 (BSAP) before the pre-B cell receptor stage of B lymphopoiesis. J Exp Med 188:735–744

    CAS  PubMed  Google Scholar 

  • Thomas MD, Srivastava B, Allman D (2006) Regulation of peripheral B cell maturation. Cell Immunol 239:92–102

    CAS  PubMed  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    CAS  PubMed  Google Scholar 

  • Tiselius A, Kabat EA (1938) Electrophoresis of immune serum. Science 87:416–417

    CAS  PubMed  Google Scholar 

  • Tokoyoda K, Egawa T, Sugiyama T et al (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718

    CAS  PubMed  Google Scholar 

  • Tsitoura DC, Yeung VP, DeKruyff RH et al (2002) Critical role of B cells in the development of T cell tolerance to aeroallergens. Int Immunol 14:659–667

    CAS  PubMed  Google Scholar 

  • Ueda Y, Yang K, Foster SJ et al (2004) Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. J Exp Med 199:47–58

    CAS  PubMed  Google Scholar 

  • Ueda Y, Kondo M, Kelsoe G (2005) Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J Exp Med 201:1771–1780

    CAS  PubMed  Google Scholar 

  • Ueda Y, Liao D, Yang K et al (2007) T-independent activation-induced cytidine deaminase expression, class-switch recombination, and antibody production by immature/transitional 1 B cells. J Immunol 178:3593–3601

    CAS  PubMed  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka I et al (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    CAS  PubMed  Google Scholar 

  • Vajdic CM, Falster MO, de Sanjose S et al (2009) Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Cancer Res 69:6482–6489

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  • von Garnier C, Wikstrom ME, Zosky G et al (2007) Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa. J Immunol 179:5748–5759

    Google Scholar 

  • Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345

    CAS  PubMed  Google Scholar 

  • Wang H, Feng J, Qi CF et al (2007) Transitional B cells lose their ability to receptor edit but retain their potential for positive and negative selection. J Immunol 179:7544–7552

    CAS  PubMed  Google Scholar 

  • Wardemann H, Yurasov S, Schaefer A et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301:1374–1377

    CAS  PubMed  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    CAS  PubMed  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    CAS  PubMed  Google Scholar 

  • Wilson DR, Merrett TG, Varga EM et al (2002) Increases in allergen-specific IgE in BAL after segmental allergen challenge in atopic asthmatics. Am J Respir Crit Care Med 165:22–26

    PubMed  Google Scholar 

  • Xanthou G, Alissafi T, Semitekolou M et al (2007) Osteopontin has a crucial role in allergic airway disease through regulation of dendritic cell subsets. Nat Med 13:570–578

    CAS  PubMed  Google Scholar 

  • Yan M, Brady JR, Chan B et al (2001) Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Curr Biol 11:1547–1552

    CAS  PubMed  Google Scholar 

  • Yanaba K, Bouaziz JD, Haas KM et al (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28:639–650

    CAS  PubMed  Google Scholar 

  • Ye M, Ermakova O, Graf T (2005) PU.1 is not strictly required for B cell development and its absence induces a B-2 to B-1 cell switch. J Exp Med 202:1411–1422

    CAS  PubMed  Google Scholar 

  • Yel L, Ramanuja S, Gupta S (2009) Clinical and immunological features in IgM deficiency. Int Arch Allergy Immunol 150:291–298

    CAS  PubMed  Google Scholar 

  • Ying H, Healy JI, Goodnow CC et al (1998) Regulation of mouse CD72 gene expression during B lymphocyte development. J Immunol 161:4760–4767

    CAS  PubMed  Google Scholar 

  • Ying S, Humbert M, Meng Q et al (2001) Local expression of epsilon germline gene transcripts and RNA for the epsilon heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J Allergy Clin Immunol 107:686–692

    CAS  PubMed  Google Scholar 

  • Yoshida T, Ng SY, Zuniga-Pflucker JC et al (2006) Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol 7:382–391

    CAS  PubMed  Google Scholar 

  • Yurasov S, Wardemann H, Hammersen J et al (2005) Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 201:703–711

    CAS  PubMed  Google Scholar 

  • Zandvoort A, Timens W (2002) The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol 130:4–11

    CAS  PubMed  Google Scholar 

  • Zhang J, Li L (2008) Stem cell niche: microenvironment and beyond. J Biol Chem 283:9499–9503

    CAS  PubMed  Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    CAS  PubMed  Google Scholar 

  • Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884

    CAS  PubMed  Google Scholar 

  • Zhuang Y, Jackson A, Pan L et al (2004) Regulation of E2A gene expression in B-lymphocyte development. Mol Immunol 40:1165–1177

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nikos Koulaxidis and Maria Papadomanolaki for their valuable help in the artistic processing of the figures included in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Bossios.

About this article

Cite this article

Samitas, K., Lötvall, J. & Bossios, A. B Cells: From Early Development to Regulating Allergic Diseases. Arch. Immunol. Ther. Exp. 58, 209–225 (2010). https://doi.org/10.1007/s00005-010-0073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-010-0073-2

Keywords

Navigation