Skip to main content

Advertisement

Log in

Fetal-cell microchimerism, lymphopoiesis, and autoimmunity

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

During all human and murine pregnancies, fetal cells enter the maternal circulation and tissues and may persist there for decades. The immune consequences of this phenomenon have been explored for many years as a potential origin of autoimmunity or protection from cancer in women after pregnancy. The leading hypothesis, suggesting that semi-allogenic fetal T cells may trigger a graft-versus-host type of disease, has been supported by several studies showing an increased frequency of fetal-cell microchimerism (FMc) in women affected with systemic sclerosis. However, a large proportion of healthy women or women affected with non-immune disorders also display fetal T cells, challenging the direct pathogenic role of such cells. In addition, recent evidence showing the transfer of various fetal progenitor cells to the mother during gestation has shed new light on the interpretation of microchimerism in autoimmunity. This review discusses the functional capacity of fetal hematopoietic progenitors to form T and B cells in maternal hematopoietic tissues, where they undergo an educational process probably resulting in tolerance to maternal antigens. Therefore, hypotheses other than the transfer of fetal cells to the mother’s circulation should be considered in explaining the observed association of FMc and autoimmune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aractingi S, Berkane N, Bertheau P et al (1998) Fetal DNA in skin of polymorphic eruptions of pregnancy. Lancet 352: 1898–1901

    Article  PubMed  CAS  Google Scholar 

  • Aractingi S, Sibilia J, Meignin V et al (2002) Presence of microchimerism in labial salivary glands in systemic sclerosis but not in Sjogren’s syndrome. Arthritis Rheum 46: 1039–1043

    Article  PubMed  Google Scholar 

  • Ariga H, Ohto H, Busch MP et al (2001) Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41: 1524–1530

    Article  PubMed  CAS  Google Scholar 

  • Artlett CM (2002) Microchimerism in health and disease. Curr Mol Med 2: 525–535

    Article  PubMed  CAS  Google Scholar 

  • Artlett CM, Cox LA, Ramos RC et al (2002) Increased microchimeric CD4+ T lymphocytes in peripheral blood from women with systemic sclerosis. Clin Immunol 103: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338: 1186–1191

    Article  PubMed  CAS  Google Scholar 

  • Bianchi DW, Zickwolf GK, Weil GJ et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 93: 705–708

    Article  PubMed  CAS  Google Scholar 

  • Blanas E, Carbone FR, Allison J et al (1996) Induction of autoimmune diabetes by oral administration of autoantigen. Science 274: 1707–1709

    Article  PubMed  CAS  Google Scholar 

  • Bonney EA, Matzinger P (1997) The maternal immune system’s interaction with circulating fetal cells. J Immunol 158: 40–47

    PubMed  CAS  Google Scholar 

  • Cha D, Khosrotehrani K, Kim Y et al (2003) Cervical cancer and microchimerism. Obstet Gynecol 102: 774–781

    Article  PubMed  Google Scholar 

  • Cirello V, Recalcati MP, Muzza M et al (2008) Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Res 68: 8482–8488

    Article  PubMed  CAS  Google Scholar 

  • Corpechot C, Barbu V, Chazouilleres O et al (2000) Fetal microchimerism in primary biliary cirrhosis. J Hepatol 33: 696–700

    Article  PubMed  CAS  Google Scholar 

  • Dubernard G, Aractingi S, Oster M et al (2008) Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Res 10: R14

    Article  PubMed  Google Scholar 

  • Dubernard G, Oster M, Chareyre F et al (2009) Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. Int J Cancer 124: 1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Fanning PA, Jonsson JR, Clouston AD et al (2000) Detection of male DNA in the liver of female patients with primary biliary cirrhosis. J Hepatol 33: 690–695

    Article  PubMed  CAS  Google Scholar 

  • Gadi VK, Malone KE, Guthrie KA et al (2008) Case-control study of fetal microchimerism and breast cancer. PLoS ONE 3: e1706

    Article  PubMed  Google Scholar 

  • Gannage M, Amoura Z, Lantz O et al (2002) Feto-maternal microchimerism in connective tissue diseases. Eur J Immunol 32: 3405–3413

    PubMed  CAS  Google Scholar 

  • Gilmore GL, Haq B, Shadduck RK et al (2008) Fetal-maternal microchimerism in normal parous females and parous female cancer patients. Exp Hematol 36: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Guetta E, Gordon D, Simchen MJ et al (2003) Hematopoietic progenitor cells as targets for non-invasive prenatal diagnosis: detection of fetal CD34+ cells and assessment of post-delivery persistence in the maternal circulation. Blood Cells Mol Dis 30: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Jimenez DF, Leapley AC, Lee CI et al (2005) Fetal CD34+ cells in the maternal circulation and long-term microchimerism in rhesus monkeys (Macaca mulatta). Transplantation 79: 142–146

    Article  PubMed  Google Scholar 

  • Khosrotehrani K, Johnson KL, Cha DH et al (2004) Transfer of fetal cells with multilineage potential to maternal tissue. JAMA 292: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Khosrotehrani K, Johnson KL, Guegan S et al (2005) Natural history of fetal cell microchimerism during and following murine pregnancy. J Reprod Immunol 66: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Khosrotehrani K, Leduc M, Bachy V et al (2008) Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. J Immunol 180: 889–897

    PubMed  CAS  Google Scholar 

  • Khosrotehrani K, Mery L, Aractingi S et al (2005) Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Ann Rheum Dis 64: 159–160

    Article  PubMed  CAS  Google Scholar 

  • Kremer Hovinga IC, Koopmans M, Baelde HJ et al (2006) Chimerism occurs twice as often in lupus nephritis as in normal kidneys. Arthritis Rheum 54: 2944–2950

    Article  PubMed  Google Scholar 

  • Kremer Hovinga IC, Koopmans M, Grootscholten C et al (2008) Pregnancy, chimerism and lupus nephritis: a multi-centre study. Lupus 17: 541–547

    Article  PubMed  CAS  Google Scholar 

  • Kuroki M, Okayama A, Nakamura S et al (2002) Detection of maternal-fetal microchimerism in the inflammatory lesions of patients with Sjogren’s syndrome. Ann Rheum Dis 61: 1041–1046

    Article  PubMed  CAS  Google Scholar 

  • Lambert NC, Lo YM, Erickson TD et al (2002) Male microchimerism in healthy women and women with scleroderma: cells or circulating DNA? A quantitative answer. Blood 100: 2845–2851

    Article  PubMed  CAS  Google Scholar 

  • McNallan KT, Aponte C, el-Azhary R et al (2007) Immunophenotyping of chimeric cells in localized scleroderma. Rheumatology 46: 398–402

    Article  PubMed  CAS  Google Scholar 

  • Mosca M, Curcio M, Lapi S et al (2003) Correlations of Y chromosome microchimerism with disease activity in patients with SLE: analysis of preliminary data. Ann Rheum Dis 62: 651–654

    Article  PubMed  CAS  Google Scholar 

  • Nelson JL, Furst DE, Maloney S et al (1998) Microchimerism and HLA-compatible relationships of pregnancy in scleroderma. Lancet 351: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Nguyen Huu S, Dubernard G, Aractingi S et al (2006) Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev 2: 111–116

    PubMed  Google Scholar 

  • Nguyen Huu S, Khosrotehrani K, Oster M et al (2008) Early phase of maternal skin carcinogenesis recruits long-term engrafted fetal cells. Int J Cancer 123: 2512–2517

    Article  PubMed  Google Scholar 

  • Nguyen Huu S, Oster M, Avril MF et al (2009) Fetal microchimeric cells participate in tumour angiogenesis in melanomas occurring during pregnancy. Am J Pathol 174: 630–637

    Article  PubMed  Google Scholar 

  • Nguyen Huu S, Oster M, Uzan S et al (2007) Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proc Natl Acad Sci USA 104: 1871–1876

    Article  PubMed  Google Scholar 

  • O’Donoghue K, Chan J, de la Fuente J et al (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364: 179–182

    Article  PubMed  Google Scholar 

  • Ohtsuka T, Miyamoto Y, Yamakage A et al (2001) Quantitative analysis of microchimerism in systemic sclerosis skin tissue. Arch Dermatol Res 293: 387–391

    Article  PubMed  CAS  Google Scholar 

  • Osada H, Doi S, Fukushima T et al (2001) Detection of fetal HPCs in maternal circulation after delivery. Transfusion 41: 499–503

    Article  PubMed  CAS  Google Scholar 

  • Sawaya HH, Jimenez SA, Artlett CM (2004) Quantification of fetal microchimeric cells in clinically affected and unaffected skin of patients with systemic sclerosis. Rheumatology 43: 965–968

    Article  PubMed  CAS  Google Scholar 

  • Scaletti C, Vultaggio A, Bonifacio S et al (2002) Th2-oriented profile of male offspring T cells present in women with systemic sclerosis and reactive with maternal major histocompatibility complex antigens. Arthritis Rheum 46: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Srivatsa B, Srivatsa S, Johnson KL et al (2001) Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet 358: 2034–2038

    Article  PubMed  CAS  Google Scholar 

  • Steen VD (2007) Pregnancy in scleroderma. Rheum Dis Clin North Am 33: 345–358

    Article  PubMed  Google Scholar 

  • Tafuri A, Alferink J, Moller P et al (1995) T cell awareness of paternal alloantigens during pregnancy. Science 270: 630–633

    Article  PubMed  CAS  Google Scholar 

  • Tan XW, Liao H, Sun L et al (2005) Fetal microchimerism in the maternal mouse brain: A novel population of fetal progenitor or stem cells able to cross the blood-brain barrier?. Stem Cells 23: 1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Lindor K, Gish R et al (1999) Fetal microchimerism alone does not contribute to the induction of primary biliary cirrhosis. Hepatology 30: 833–838

    Article  PubMed  CAS  Google Scholar 

  • Valerio D, Altieri V, Antonucci FR et al (1997) Characterization of fetal haematopoietic progenitors circulating in maternal blood of seven aneuploid pregnancies. Prenat Diagn 17: 1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Iwatani H, Ito T et al (2004) Fetal cells in mother rats contribute to the remodeling of liver and kidney after injury. Biochem Biophys Res Commun 325: 961–967

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiarash Khosrotehrani MD, Ph.D..

About this article

Cite this article

Leduc, M., Aractingi, S. & Khosrotehrani, K. Fetal-cell microchimerism, lymphopoiesis, and autoimmunity. Arch. Immunol. Ther. Exp. 57, 325–329 (2009). https://doi.org/10.1007/s00005-009-0044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0044-7

Keywords

Navigation