Algorithmic Decomposition of Geometric Islamic Patterns: A Case Study with Star Polygon Design in the Tombstones of Ahlat

Abstract

The current practice is to make the mathematical analysis of many Islamic patterns in 2D; however, since such patterns actually have 3D features, the third dimension must also be considered. Indeed, the three-dimensional features of the patterns made by carving on stone are very numerous. In this work, it is proposed to perform a 3D mathematical analysis of patterns of this type by algorithmic decomposition. In the cemetery of Ahlat, which is an existing monument, a tombstone with high three-dimensional features, designed by Asil b. Veys (Uveys), was chosen for algorithmical analysis. The mathematical design rules of the star polygon pattern in the selected monument were determined, as based on the shape grammar theory. The probable rules for the creation of the star polygon pattern in this study were produced simultaneously in the computer environment using a visual programming language and a 3D parametric pattern generator of the pattern was created.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Alacam, S., Guzelci O.Z., Gurer, E. and S.Z. Bacinoglu. 2017. Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics. International Journal of Architectural Computing15 (4): 285–303.

    Article  Google Scholar 

  2. Arik, M. and M. Sancak. 2007. Turkish-Islamic Art and Penrose Tilings. Balkan Physics Letters15 (3): 84–95.

    Google Scholar 

  3. Baykara, T. and M.C. Isik. 2016. Physical Characterization, Microstructural Evaluation, and Condition Assessment of Ancient Ahlat Tombstones in the Seljukian Cemetery of Ahlat (Turkey). International Journal of Architectural Heritage10 (8): 1025–1040.

    Article  Google Scholar 

  4. Beatini, V. 2017. Kinetic Rosette Patterns and Tessellations. International Journal of Computational Methods and Experimental Measurements5 (4): 631–641.

    Article  Google Scholar 

  5. Bodner, B.L. 2012. From Sultaniyeh to Tashkent Scrolls: Euclidean Constructions of Two Nine- and Twelve-Pointed Interlocking Star Polygon Designs. Nexus Network Journal14 (2): 307–332.

    Article  Google Scholar 

  6. Bonner, J. 2003. Three traditions of self-similarity in fourteenth and fifteenth century Islamic geometric ornament. In: ISAMA-BRIDGES Conference Proceedings (Granada, Spain, July 23-25), eds. J. Barrallo, J. Martinez-Aroza, N. Friedman, R. Sarhangi, J.A. Maldonado and C. Sequin, 1–12. http://archive.bridgesmathart.org/2003/. Accessed 3 August 2018.

  7. Bonner, J.F. 2016. The Historical Significance of the Geometric Designs in the Northeast Dome Chamber of the Friday Mosque at Isfahan. Nexus Network Journal18: 55–103.

    Article  Google Scholar 

  8. Bonner, J. 2017. Islamic Geometric Patterns: Their Historical Development and Traditional Methods of Construction. NY: Springer.

    Google Scholar 

  9. Bourgoin, J. 1879. Les Eléments de l’Art Arabe: Le Trait des Entrelacs. Paris: Firmin-Didot.

    Google Scholar 

  10. Broug, E. 2008. Islamic Geometric Patterns. London: Thames and Hudson.

    Google Scholar 

  11. Burckhardt, T. 2009. Art of Islam: Language and Meaning. Bloomington, Indiana: World Wisdom Inc.

    Google Scholar 

  12. Castera, Jean-Marc. 2011. Flying Patterns. In: Bridges Coimbra Conference Proceedings (Coimbra, Portugal, July 27-31), eds. R. Sarhangi and C. Sequin, 263–270. Phoenix, Arizona: Tessellations Publishing.

    Google Scholar 

  13. Cenani, Sehnaz and Gulen Cagdas. 2007. A Shape Grammar Study: Form Generation with Geometric Islamic Patterns. In: 10th Generative Art Conference Proceedings (Milan, Italy, December 12–14), ed. C. Soddu, 216–223. Milan: Domus Argenia Publisher.

  14. Corcuff, Marie-Pascale. 2018. Jules Bourgoin (1838–1908): A Forerunner of Generative Shape Grammers. In: Nexus Architecture and Mathematics 2018 Conference Book, eds. Kim Williams and Marco Giorgio Bevilacqua, 257–262. Kim Williams Books.

  15. Critchlow, K. 1983. Islamic Patterns: An Analytical and Cosmological Approach. London: Thames & Hudson.

    Google Scholar 

  16. Cromwell, P.R. 2009. The Search for Quasi-Periodicity in Islamic 5-fold Ornament. The Mathematical Intelligencer31: 36–56.

    MathSciNet  Article  Google Scholar 

  17. Demiriz, Y. 2000. Islam sanatinda Geometrik susleme: Bir Envanter Denemesi. Istanbul: Lebib Yalkin Yayinlari.

    Google Scholar 

  18. Duarte, J.P. 2005. Towards the mass customization of housing: the grammar of Siza’s houses at Malagueira. Environment and Planning B: Planning and Design32 (3): 347–380.

    Article  Google Scholar 

  19. El-Said, I. and A. Parman. 1976. Geometric Concepts in Islamic Art. London: World of Islam Festival Publishing Company Ltd.

    Google Scholar 

  20. Hankin E.H. 1925a. The Drawing of Geometric Patterns in Saracenic Art. Archaeological survey of India: Memoirs. Calcutta: Government of India, Central Publication Branch.

  21. Hankin E.H. 1925b. Examples of methods of drawing geometrical arabesque patterns. The Mathematical Gazette12: 371–373.

    Article  Google Scholar 

  22. Isik, E., Bakis, A., Akilli, A. and F. Hattatoglu. 2015. Usability of Ahlat Stone as Aggregate in Reactive Powder Concrete. Int. Journal of Applied Sciences and Engineering Research4 (4): 507–514.

  23. Kaplan, C.S. and D.H. Salesin. 2004. Islamic Star Patterns in Absolute Geometry. ACM Transactions on Graphics23 (2): 97–119.

    Article  Google Scholar 

  24. Kaplan, C.S. 2005. Islamic Star Patterns from Polygons in Contact. In: Proceedings of the Graphics Interface 2005 Conference (May 9-11, Victoria, British Columbia, Canada), ed. M. McCool, 177–185. Waterloo, Ontario: Canadian Human-Computer Communications Society and A K Peters Ltd.

  25. Karamagarali, B.1992. Ahlat Mezar Taslari. Ankara: Kultur Bakanligi Yayinlari.

    Google Scholar 

  26. Kasraei, M.H., Nourian, Y. and M. Mahdavinejad, 2016. Girih for domes: analysis of three Iranian domes. Nexus Network Journal18: 311–321.

    Article  Google Scholar 

  27. Knight, T. and G. Stiny. 2015. Making grammars: From computing with shapes to computing with things. Design Studies41: 8–28.

    Article  Google Scholar 

  28. Kuban, D. 2002. Selcuklu Caginda Anadolu Sanati. Istanbul: Yapi Kredi Yayinlari.

    Google Scholar 

  29. Makovicky, E. and N.M. Makovicky. 2017. Nonperiodic Octagonal Patterns from a Jali Screen in the Mausoleum of Muhammad Ghaus in Gwalior and Their Periodic Relatives. Nexus Network Journal19: 101–120.

    Article  Google Scholar 

  30. Mulayim, S. 1982. Anadolu Turk Mimarisinde Geometrik Suslemeler: Selcuklu Cagi. Ankara: Kultur ve Turizm Bakanligi Yayinlari.

    Google Scholar 

  31. Necipoglu, G. 1995. The Topkapi Scroll- Geometry and Ornament in Islamic Architecture: Topkapi Palace Museum Library MS H. Santa Monica, CA: The Getty Center for the History of Art and the Humanities.

    Google Scholar 

  32. Oney, G. 1978. Anadolu Selcuklu Mimarisinde Susleme ve El Sanatlari. Ankara: Turkiye Is Bankasi Kultur Yayinlari.

    Google Scholar 

  33. Ozkar, M. 2011. Visual schemas: pragmatics of design learning in foundations studios. Nexus Network Journal13 (1): 113–130.

    Article  Google Scholar 

  34. Redondo-Buitrago, A. and D. Huylebrouck. 2015. Nonagons in the Hagia Sophia and the Selimiye Mosque. Nexus Network Journal17 (1): 157–181.

    Article  Google Scholar 

  35. Redondo-Buitrago, Antonia. 2018. On Polygons, Set Squares and Mudejar Carpentry. In: Nexus Architecture and Mathematics 2018 Conference Book, eds. Kim Williams and Marco Giorgio Bevilacqua, 73–77. Kim Williams Books.

  36. Rigby, J. 2005. A Turkish Interlacing Pattern and the Golden Ratio: Whirling Dervishes and a Geometry Lecture in Konya. Mathematics in School34 (1): 16–24.

    Google Scholar 

  37. Sarhangi, R. 2012. Interlocking Star Polygons in Persian Architecture: The Special Case of the Decagram in Mosaic Designs. Nexus Network Journal14 (2): 345-372.

    Article  Google Scholar 

  38. Schneider, 1980. Geometrische Bauornamente der Seldschuken in Kleinasien. Wiesbaden: Reichert.

    Google Scholar 

  39. Stiny, G. and J. Gips. 1972. Shape grammars and the generative specification of painting and sculpture. Information Processing71: 1460–1465.

    Google Scholar 

  40. Stiny, G. 2006. Shape: Talking about Seeing and Doing. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  41. Wilson, E. 1988. Islamic Designs. London: The British Museum Press.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Asli Agirbas.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agirbas, A. Algorithmic Decomposition of Geometric Islamic Patterns: A Case Study with Star Polygon Design in the Tombstones of Ahlat. Nexus Netw J 22, 113–137 (2020). https://doi.org/10.1007/s00004-018-0416-6

Download citation

Keywords

  • Design analysis
  • Geometric islamic patterns
  • Shape grammars
  • Design computation
  • Parametric design