Nexus Network Journal

, Volume 20, Issue 1, pp 153–172 | Cite as

Transfer of Mathematical Knowledge for Building Medieval Cathedrals

  • Josep Lluis i Ginovart
  • Mónica López-Piquer
  • Judith Urbano-Lorente
Research
  • 78 Downloads

Abstract

The construction of Gothic cathedrals is among the great achievements of medieval science, as defined in terms of theorica and practica. The success of these constructions is due to the knowledge of promoters and builders. This study introduces the original sources of the codex of the cathedral of Tortosa (Catalonia, Spain) with authors such as Calcidius, Capella, Macrobius, Al-Ḥajjāj ibn Yūsuf ibn Maṭar or Gerbert. The combined assessment of these sources, together with the masonry built and Guarc’s original plan (c.1345–c.1380) shed some light on the mathematical knowledge of the cathedrals’ builders.

Keywords

Mathematics in middle ages Gothic cathedrals Medieval geometry Heptagon Octagon Tortosa cathedral 

Abbreviations

ACTo

Arxiu capitular tortosa (Chapter Archives of Tortosa)

AHCTE

Arxiu històric comarcal terres ebre

FBMPM

Fundación bertomeu march palma mallorca

Notes

Acknowledgements

We are most grateful to Prof. Menso Folkerts for identifying the Geometria of the De Nuptiis Philologiae et Mercurii by Martianus Capella ACTo 80. We would also like to thank Prof. Charles Burnett for his advice on the translation and identification of the commentary on Euclid’s Elements by Al-Hajjaj ibn Yūsuf ibn Matar (786–833).

References

  1. Alonso Alonso, Manuel 1955. Domingo Gundisalvo. De Scientiis. Compilación a base principalmente de la de Al-Farabi. Madrid: Consejo Superior de Investigaciones Científicas: 85–112.Google Scholar
  2. Armisen-Marchetti, Mireille. 2001. Macrobe. Commentaire au Songe de Scipion. Livre I: Texte critique, traductione et commentaire. Paris: Les Belles Lettres.Google Scholar
  3. Armisen-Marchetti, 2003. Macrobe. Commentaire au Songe de Scipion. TomeII, Livre II. Paris: Les Belles Letres.Google Scholar
  4. Bayerri, Enrique. 1962. Los Códex Medievales de la Catedral de Tortosa. Novísimo inventario descriptivo. Tortosa: Talleres Gráficos Algueró y Baiges.Google Scholar
  5. Beaujouan, Guy. 1963. Calcul d’expert, en 1391, sur le chantier du Dôme de Milan. Pp. 555–563 in Le Moyen Age. Bruxelles: Livraire Jubilaire.Google Scholar
  6. Beaujouan, Guy. 1975. Réflexions sur les rapports entre théorie et pratique au Moyen Âge. Pp. 437-484 in The Cultural Context of Medieval Learning, J. E. Murdoch and E. D. Sylla, eds. Dordrech: Reidel Publishing Company.Google Scholar
  7. Boncompagni, Baldassarre. 1854. Intorno ad alcune opere di Leonardo Pisano matematico del secolo decimoterzo. Roma: Tipografia delle Belle Arti.Google Scholar
  8. Bouvelles, Charles. 1510. Liber de intellectu, Liber de sensibus, Libellus de Nihilo, Ars oppositorum, Liber de generatione, Liber de Sapiente, Liber de duodecim numeris, Philosophicæ epistolæ, Liber de perfectis numeris, Libellus de Mathematicis rosis, Liber de mathematicis corporibus, Libellus de mathematicis supplementis. Paris: Henri Estienne.Google Scholar
  9. Bouvelles, Charles. 1542. Livre singulier et utile, touchant l’art praticque de geometrie,composé nouvellement en françoys, par maistre Charles de Bouvelles. Paris: S. de Colines. Subsequent eds.: Geometrie practique, composée par… Charles de Bouvelles, et nouvellement par luy reveue, augmentée et grandement enrichie. Paris: Regnaud Chaudière et Claude, 1547; (Paris:1551); (Paris: Cavellat 1555); (Paris: Marnef et Cavellat, 1566). Geometrie practique composée par… Charles de Bouvelles… avec un traicté des mesures geometriques, des hauteurs accessibles ou inaccessibles et de toutes choses pleines ou profondes… par M. Jean-Pierre de Mesmes… Plus l’art de mesurer toutes superficies rectilignes, tiré des Elemens d’Euclide, par M. Jean Des Merliers d’Amiens. Paris: Cavellat, 1605 and 1608.Google Scholar
  10. Bubnov, Nicolaus. 1899. Gerberti postea Silvestri II papae opera mathematica (9721003). Berlin: Friedlände.Google Scholar
  11. Bucher, François. 1979. Architector. The Lodge Books and Sketchbooks of Medieval Architects. Vol.1. New York: Abaris Books.Google Scholar
  12. Burnett, Charles. 1996. Algorismi vel helcep decentior est diligentia: the Arithmetic of Adelard of Bath and his Circle. Pp. 221–331 in Mathematische Probleme im Mittelalter: der lateinische und arabische Sprachbereich, Menso Folkerts, ed. Wiesbaden: Otto Harrassowitz.Google Scholar
  13. Burnett, Charles. 2006. The semantics of Indian numerals in Arabic, Greek and Latin. Journal of Indian Philosophy 34: 15–30.CrossRefMATHGoogle Scholar
  14. Capella, Marziano. 2001. Le Nozze di Filologia e Mercurio. Ilaria Ramelli, ed. and trad. Milano: Bompiani.Google Scholar
  15. Curtze, Maximilian. 1897. Petri Philomeni de Dacia in algorismun vulgarem Johannis de Sacrobosco: Commentarius Petri Philomeni de Dacia. Copenhagen: A. F. Hoest & Fil.Google Scholar
  16. Denifle, Heinrich and Emile Chatelain. 1896. Inventarium Codicum Manuscriptorum Capituli Dertusensis. Paris: Apud Aemilium Bouillon, Editoem.Google Scholar
  17. González Palencia, Ángel. 1932. Alfarabi. Catálogo de las ciencias. Madrid: Facultad de Filosofia y Letras.Google Scholar
  18. Halliwell, James Orchard, ed. 1841. Rara mathematica; or, A collection of treatises on the mathematics and subjects connected with them, from ancient inedited manuscripts. London: Samuel Maynard.Google Scholar
  19. Heiberg, J. L. 1914. Heronis quae feruntur Stereometrica et De mensuris. Heronis Alexandrini Opera quae supersunt omnia. Leipzig: Teubner.Google Scholar
  20. Høyrup, Jens. 2009. The Rare Traces of Constructional Procedures in ‘Practical Geometries’. Pp. 367–377 in Creating Shapes in Civil and Naval Architecture. Horst Nowacki and Wolfgang Lefèvre, eds. Leiden & Boston: Brill.Google Scholar
  21. Levey, Martin. 1952. The Encyclopedia of Abraham Savasorda: A Departure in Mathematical Methodology. Isis 43(3): 257-264.CrossRefMATHGoogle Scholar
  22. Lluis, i Ginovart, Josep, Gerard Fortuny Anguera, Agustí Costa Jover and Pau de Sola-Morales Serra. 2013. Gothic Construction and the Traça of a Heptagonal Apse: The Problem of the Heptagon. Nexus Network Journal 15(2): 325-348.Google Scholar
  23. Lluis i Ginovart, Josep, Agustí Costa Jover and Sergio Coll Plá. 2015a. Placing the keystone of the vault over the presbytery in Tortosa Cathedral, Spain (1428-40). Construction History 30(1): 1-21.Google Scholar
  24. Lluis i Ginovart, Josep, Ignasi Baiges Jardi and Josep Alanyà i Roig. 2015b. La geometría del códex 80 de la catedral de Tortosa. Anuario de Estudios medievales 45(2): 803-851.Google Scholar
  25. Lluis i Ginovart, Josep, Sergio Coll Plá and Agustí Costa Jover. 2017. The Layout of the Gothic Octagon Dome of Tortosa Cathedral. International Journal of Heritage Architecture 1: 99-113.Google Scholar
  26. Menéndez Pidal, Gonzalo. 1959. Los llamados numerales árabes en occidente. Boletín de la Real Academia de la Historia 145: 45-116.Google Scholar
  27. Millàs Vallicrosa, Josep Maria. 1931. Llibre de geometria: Hibbur hameixihà uehatixbòret. Barcelona: Alpha.Google Scholar
  28. Moreschini, Claudio. 2003. Calcidius. Commentario al Timeo di Platone. Milano: Bonpiani.Google Scholar
  29. Olleris, Alexandre. 1867. Oeuvres de Gerbert, Pape sous le nom de Sylvetres II collationnées sur les manuscrits, précédées de sa biographie, suivies de notes critiques & historiques. Clermond-Ferrand: F. Thibaud, Impr.-Libr.-Éditeur.Google Scholar
  30. Özdural, Alpay. 2002. The Church of St. George of the Latins in famagusta: A Case Study on Medieval Metrology and Design Techniques. Pp. 217-242 in Ad Quadratum, Nancy Wu, ed. Burlington: Ashgate.Google Scholar
  31. Roriczer, Matthäus. 1999. Das Büchlein von der Fialen Gerechtigheit (fac. Regensburg 1486) und Die Geometria Deutsch (fac. Regensburg un 1487/88). Regensburg: Hürtgenwald Guido Pressler.Google Scholar
  32. Rubió i Lluch, Antoni and Jordi Rubió i Balaguer. 1914. La Biblioteca del Capítol Catedral de Tortosa. Anuari de l’Institut d’Estudis Catalans (1913-1914), Any V, Pt. II:745-757.Google Scholar
  33. Sarrade, Marie-Thérèse. 1986. Sur les connaissances mathématiques des batisseurs de cathédrales. Paris: Librairie du Compagnonnage.Google Scholar
  34. Schoene, H. 1903. Heronis Alexandrini opera quae supersunt omnia. Vol III: Rationes dimetiendi et commentatio dioptrica. Leipzig: Teubner.Google Scholar
  35. Silberberg, Moritz. 1895. Sefer Ha-Mispar. Das Buch der Zahl, ein habräisch-Werk arithmetisches Werk des R. Abraham ibn Esra. Frankfurt am Main: J. Kauffmann.Google Scholar
  36. Silvester II [Gerbert of Aurillac]. 1853. De geometria. Patrologia Latina (MPL139), Minge, ed., pp. 94-152. Paris: Apud Garnier Fratres.Google Scholar
  37. Svenshon, Helge. 2010. ‘Schlag’ nach bei Heron. Der Turm der Winde im Spiegel antike Vermessungslehre’. Pp. 103-112 in Bericht über die 45. Tagung für Ausgrabungswissenschaft und Bauforschung (30 April – 4 May 2008, Regensburg). Dresden: Koldewey-Gesellschaft.Google Scholar
  38. Waszink, Jan Hendrik, ed. 1975. Plato Latinus IV. Timaeus, a Calcidio translatus commentarioque instructus. London: The Warburg Institute.Google Scholar
  39. Watts, Carol. 2015. The Square and the Roman House: Architecture and Decoration at Pompeii and Herculanum. In: Architecture and Mathematics from Antiquity to the Future, vol. I, pp. 201-213, Kim Williams and Michael J. Ostwald, eds. Cham: Springer.Google Scholar
  40. Willis, James, ed. 1970. Macrobius. Commentarii In Somnium Scipionis (Macrobii Opera Vol II). Leipzig: Teubner.Google Scholar
  41. Willis, James, ed. 1983. Martianus Capella. Leipzig: Teubner.Google Scholar

Copyright information

© Kim Williams Books, Turin 2017

Authors and Affiliations

  1. 1.Universitat Internacional de CatalunyaBarcelonaSpain

Personalised recommendations