Nexus Network Journal

, Volume 16, Issue 3, pp 587–612 | Cite as

The Ellipse and the Oval in the Design of Spanish Military Defence in the Eighteenth Century

  • Josep Lluis i Ginovart
  • Josep M. Toldrà Domingo
  • Gerard Fortuny Anguera
  • Agustí Costa JoverEmail author
  • Pau de Sola-Morales Serra


The Spanish military engineers built several U-shaped strongholds during the eighteenth century, using the geometrical constructions of the ellipsis et ovum. In the project on paper, engineers used the oval because of its ease of layout, but they could use either of the two figures in the staking of the fortifications. In 1704 Vicente Tosca published a methodology for building infinite ovals from its main axes. The assessment of the staking of the artillery platform of San Jorge reveals that the trace can be based both on the ellipse as the oval shape, since they have negligible difference on the scale of construction. The ellipsis et ovum discussion had a linguistic aspect from the perspective of applied mathematics, since different geometrical approximations for these artillery platforms may converge.


Military architecture Spanish military architecture Fortifications century Ellipse Geometry Oval 



Archivo General de Simancas


Mapas, Planos y Dibujos


Servicio Histórico Militar


During the War of the Spanish Succession (1701–1713), Philip V (1683–1746) created the Royal Corps of Military Engineers (1711) and the Academy of Mathematics of Barcelona (1720), introducing Enlightenment thought to Spain. Earlier, the Habsburg dynasty had established the Academy of Mathematics, regulating the powers of the King’s Engineers in Madrid (1582, 1612), followed by Brussels (1675) and Barcelona (1692).

The Spanish military treatises of the seventeenth and eighteenth century assume the universality conferred on mathematics by Cartesianism as a method for the investigation of reality, dealing with the causes and effects that perfect the world (León 1992). The engineer Diego Enrique de Villegas (d. 1651) defined military architecture as a science that teaches its students about all the possible types of siege, based on their strength or weakness. Its foundations lie in mathematics and it is one of the parts into which it is divided (De Villegas 1651: 5–9). The engineer Andrés Davila y Heredia (d. 1672) explained the hierarchy which some parts of Mathematics retain within the arts, and stated in (Davila 1672: 6–56) that arithmetic and geometry are the foundations for the others. Geometry is sovereign to such an extent that all its operations are considered for the use and success of the arts, because the architect is unable to work in any area without it. According to the engineer José Chafrión (1653–1698), speculative arithmetic considers the hidden properties of numbers and their practice and use (Chafrión 1693: 1).

Based on these assumptions, the Spanish military engineers of the eighteenth century built a series of U-shaped batteries acting as artillery platforms (Fig. 1). The classic discussion, ellipsis et ovum (Migliari 1995: 93–102), is a direct reference to the mathematical studies of conic sections, and their application in military architecture. The increased use of the string method for tracing the ellipse, as well as the dissemination of several methods for tracing ovals in the treatises on military architecture of the late sixteenth century, led to the discussion concerning the scale of one of these artillery platforms. The ellipsis et ovum discussion had a linguistic aspect from the perspective of applied mathematics. At the scale of construction, the geometric approach followed for defensive constructions—whether the ellipse and the oval—made a negligible difference.
Fig. 1

U-shaped artillery platform by Pedro Moreau. Campo de Gibraltar (1750). Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 56, 038, with geometric overlay by the authors. Reproduced by permission

Non-Polygonal Defensive Bastions

Defensive art is essentially based on polygonal shapes that can be constructed using triangular forms, depending on whether the fortification is regular or irregular. Military engineers in the eighteenth century used the U-shaped layout in some small coastal strongholds, such as Salobreña in Granada, 1722 (Fig. 2a) on the Alboran Sea, the Fort of El Ferrol on the Cantabrian Sea, 1731 (Fig. 2b) and the fortifications of Arrecife in Las Palmas in the Canary Islands, in the Atlantic, 1779 (Fig. 2c).
Fig. 2

Coastal Batteries: a Salobreña, 1722. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 59, 032. Reproduced by permission, b El Ferrol, 1731. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 25, 0159. Reproduced by permission, c Arrecife, 1779. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 11, 052

When laying out these fortifications, Bourbon engineers used either the measurements of the Castilian vara, as decreed by Philip II on 24 June 1568, or the toesa, decreed by Philip V on 4 July 1718, depending on the tradition they followed. The discrepancies between the work of some Spanish military engineers, and especially between the work in the Academy, where the vara was used, and standard practice, which used the toesa, led to the publication of a circular to the Captains General dated 14 July 1750. This stated that not only would the Castilian vara be used in the teaching of mathematics, but that it would also be used in all matters relating to the Army and Navy. However, the Royal Order by Fernando VII dated 14 February 1751 stated that all military facilities had to use the toesa. The debate on the unit of measurement used in teaching at the Academy of Mathematics and in standard practice led its director, Juan Martin Zermeno, to reconsider the discrepancies between the use of the vara and the toesa in 1768 (Lucuze 1773: 3–57).

The debate focused on the military engineers’ transfer of the project, which has a geometric structure, to an arithmetic metrology in the practice of fortification. The toesa used in the Tortosa region measured 194.90 cm, and was subdivided into six pies (about 32.48 cm). The Castilian vara, the length of which was equal to 83.59 cm, was subdivided two ways: into four palmos (about 20.90 cm) and into three pies (about 27.86 cm).

The U-shaped layout appeared in the Principios de Fortificación written by Pedro de Lucuze (1692–1779) (1772) (Fig. 3), where it is described as the most common type occurring in the batteries in a fortress on the seashore, or the banks of a navigable river. The curvature of the bastion facilitates direct cannon shots in any direction. The entrance to the enclosure is located in the gullet or mouth of the U, forming a small fortified front to defend the door from the flanks. The door is located in the middle of the retaining wall, and protected by a small pit (Lucuze 1772: 96–97, Fig. 53).
Fig. 3

a The U-shaped layout shown in (Lucuze 1772: Fig. 53. Lam IV); b Fort of Sachal in Ceuta, by Don Luis Huet, 1763. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 64, 033. Reproduced by permission

The curved shape of the U-shaped fortification platform is not formally defined in the text by Lucuze. In some of the engineers’ plans, the graphic representation of the curved shape simply consists of an arc of circumference which is not even on a tangent to the flank. This type originates in the works of Albert Dürer (1471–1528), Etliche underricht zu befestigung der Stett, Schlosz, und flecken (1527), in the Geschützrondellen, rotundas with artillery, and the Pastey, a term for a bastion. To understand the U-shaped defensive arrangement, an obligatory reference is Chap. 5, ‘Creating the powder artillery defense platform’ (Dürer 1527) (Fig. 4a).
Fig. 4

a Composition of various plates from (Dürer 1527: p.23 bis and p.37 bis); b example of the use of curved shapes, from (González de Medina Barba 1599: p. 176–177)

Curved shapes are very rarely used in military treatises, and limited to small defences. These include those by Diego González de Medina Barba (González de Medina Barba 1599: 200) (Fig. 4b), Gabrio Busca (c. 1540–1605) with semicircular elements (Busca 1601: 224), Jean Errard Bar-le-Duc (1554–1610) (Errard de Bar-le-Duc 1604: 109–130), and those of the fortress and Castle of Lecco (Chafrión 1687: 31–32).

The Eighteenth-Century Defences on the Coast of Tortosa

Shortly after the surrender of the city of Tortosa to the Duke of Orleans, on 15 July 1708, during the War of Spanish Succession (1701–1713), Philip V (1683–1746) appointed Jorge Prosper Verboom (1667–1744) as General Engineer on 13 January 1710. During the siege of the city of Barcelona (1712–1714), Alejandro de Retz, holder of the high rank in Flanders, was sent to Tortosa in 1712 and appointed Director of the Catalan fortresses based in the city. One of the engineers’ tasks was to construct batteries on the coast. The first stages saw the construction of the fort of Coll de Balaguer in around 1721, by the engineer Luis de Langot, Vauban’s assistant, followed by the Fort of Sant Jorge (c. 1744), and the defences of San Carlos de la Rapita by Miguel Marin (1733), the defences of Puerto de los Alfaques, with the tower of San Juan (1739) by Enrique Legallois de Grimarest, and Marcos de Serstevens (1748), in Alcanar. In the second stage of fortification of the new city of San Carlos de la Rápita, Francisco Llobet (1779) planned similar types of fortification in the Alfaques area (Fig. 5b).
Fig. 5

Batteries: a San Jorge de Alfama, c.1744. Image: SHM (9250); b Los Alfaques, 1779. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 08, 130. Reproduced by permission

Various documents are available from the design and construction of the fort of San Jorge, in c. 1744.1 The layout of the project (Fig. 5a) was expressed in toesas and was performed using an oval, with the axis set at 12 toesas. The minor radius is 22 pies and the centre of the major radius is 18 feet from the axis, so that the oval is inscribed in a rectangle of 72 × 26.8 pies (12 × 4.46 toesas). The metrological design of the ellipse would allow a rectangle of 72 × 27 pies, with a focus located 9 pies from the axis of the fortification (Fig. 6).
Fig. 6

Oval and ellipse, Fort of Sant Jorge de Alfama, c.1744. Image: SHM (9250) with authors’ geometric overlay, dimensions P given in pies. Reproduced by permission

A manual planimetric survey of the Fort of San Jorge was conducted in 1984, with a maximum deviation of 1 % (Generalitat 1990: 24) (Fig. 7). The metrology of the fortification’s main walls and its measurements of width and height were seen to follow the metric of toesas. The measure of the front axis was 12.046 toesas (23.49 m) by 4.456 toesas (8.69 m). With these methods, and having a header with a metrology of 12 toesas and 4.5 toesas, there was a tendency to assume that the battery that was laid out by an ellipse with major axes of 12 and 4.5 toesas. The commensurability of the measure led to a manual delineation of the battery layout using the so-called gardener’s or string method (see the “Appendix I: The Precedents for the Ellipse and the Conic Sections in the Literature” below), for which it was necessary to construct an ellipsograph.
Fig. 7

Fort of San Jorge de Alfama. Image: Josep Lluis i Ginovart, 1984

The plan by Francisco Llobet (1705–1785) for Los Alfaques (1779), which was never built, is shown in a plan on paper, in coloured ink, measuring 53 × 37 cm.2 The document contains two orthogonal projections of the ground plans: “Explicación, Plano bajo…” (Explanation, ground floor) containing thirteen rooms and “Plano alto…” (Upper floor) with another three, and the “Perfil A–B” (orthogonal cross-section A–B). The scale used for the plan shows 50 Spanish varas (19.6 cm, about 1:220), while the scale used for the cross-section is 30 Spanish varas (23.3 cm, about 1:110). The design has a ground plan layout with a metrological base of a width of 46 varas, constructed by means of an oval (Fig. 8). The major axis is 15 varas from the head of the counterguard, the minor radius is 9 varas from the central axis, the major axis is 16 varas from that, and the rise is 16 varas and 1.5 palmos. If the plan is laid out on the ground with a precise metrology of 43 × 47 varas, the ellipse of 46 × 32 varas would have a focus located at about 5 varas from the axis of the fortification.
Fig. 8

Oval and ellipse of the Forts of Los Alfaques (1779) (P = pies). Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 08, 130, with geometric overlay by the authors. Reproduced by permission

The Metrological Foundations of Batteries

The distinction between laying out the oval and the ellipse, in the construction of U-shaped bastions arises from the need for the geometric layout of the plan and its subsequent transfer to the work. In some cases semicircles were used for the delineation of bastions, as at Las Aguilas, 1752 (Fig. 9a), and in other cases arcs of circumference were used, as in Marbella, 1737 (Fig. 9b), but in most cases, as in Marbella, 1732 (Fig. 9c), ovals were used.
Fig. 9

Geometrical elevations: a Semicircumference at Las Aguilas, 1752. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 20, 056; b arcs of circumference Marbella, 1737. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 39, 066); c oval at Marbella, 1732. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 39,065. Reproduced by permission

Different strategies for the layout of ovals can be found in the plans of Salobreña, 1722 (AGS: MPD, 59, 032); Marbella, 1732 (AGS: MPD, 39, 065); Campo de Gibraltar, 1750 (AGS: MPD, 56, 038); and los Alfaques, 1779 (AGS: MPD, 08, 130). In some cases, the ovals’ major axis was divided into three equal parts, in others it was performed a metrological solution, and in other cases the layout is similar to the basket arch layout. The main drawback of this type of oval is that it is difficult to translate into the construction work, as it is necessary to perform several operations in order to lay out the centers.

The translation of the U-shaped work depended on two basic issues: (1) the ease of its layout and (2) the level of commensurability of the gauge of the U. If the dimensions of the axes are commensurable, it can be solved by the construction of either the ellipse or of the oval. The construction of the ellipse, using string, attributed to Anthemius of Tralles (c. 474–c. 558), was described by Cataneo (1567) and Bachot (1587). The design of the ellipse in the work is immediate. With the two axes, the foci are determined and the ellipse is laid out continuously, unlike the oval, in which the centre has to be changed. The foci require a compass operation at the end of the minor axis on the major axis of the battery. The difficulty with the figure lies in the construction of concentric ellipses, equidistant from main edges, as the focus changes position on the major axis.

One of the most influential figures in the theoretical training of Spanish military engineers, Tomás Vicente Tosca i Mascó (1651–1723) (Camara 2005: 133–158), provided instructions for constructing the oval when two axes are given (Tosca i Mascó 1707: I, prop. XV). The apparent difficulty of tracing the oval posed by the suppression of measures to find the centres was alleviated by his method. The tracing initially placed the centre of the minor arc on the major axis. This first measurement could be perfectly metrological, while the second centre of the oval, located on the minor axis, can be constructed by a simple squaring operation.

Unlike the laying out of the work, the delineation of a plan with concentric ellipses is complex, since, although various instruments were known, such as those described in Besson (1569), Barrozzi (1586) and Bachot (1587), the engineers used the two-pointed compass for its layout. The military engineers thus tended to use the oval (Fig. 10), using methods derived from Serlio (1545). With this method, the military engineer uses the width of the bastion as the major axis, and determines the minor axis using the layout method. The rise of the U has a dimension which is derived and is therefore not measurable.
Fig. 10

Oval layouts: a Salobreña, 1722. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 59, 032; b Marbella, 1732. Image: España, Miniesterio de Educación y Deporte, Archivo General de Simancas, ES.47161.AGS/4.3//MPD, 39, 065, with authors’ geometric overlay. Reproduced by permission


The geometric study of the plans of the U-shaped batteries of San Jorge and Los Alfaques concludes that they are laid out using Serlio’s methods for ovals and their derivatives. The small-scale delineation of the platforms uses concentric ovals with two centers, as shown by the pin pricks in the paper left by the compasses used by the engineers.

The tracing of the U shape of the Fort of San Jorge on the ground was very different. If the pre-established dimensions—those on the main axes—are taken as the starting point, the geometric forms for laying out ellipses based on Cataneo (1567), and ovals based on Tosca i Mascó (1707) tend to be very similar (Fig. 11).
Fig. 11

Layout of the equivalent oval and ellipse at the Fort of San Jorge. Image: authors

Both represent a similar degree of difficulty in the layout on the ground. Two geometric operations must be performed in order to lay out the wall of the “U” using an ellipse, and thereby determine the foci of the concentric ellipses. If this is done using a Tosca oval, the centre of the minor radius is set on the major axis, meaning that two geometric operations are also required in order to lay out the other centre. The difficulty in laying out the ellipse and the oval for staking on the ground is very similar.

If we construct an ellipse and an oval with an area equivalent to 320.70 m2, for the Fort of San Jorge, with axes of 23.49 and 17.38 m, the equivalent oval has the centre of the minor radius located 7.12 m from the flank of the Fort. The theoretical point is located 3.00 cm from the wall of the courtyard of the Fort.

An extraordinary approximation of both figures is obtained with the construction of the Tosca oval for San Jorge, and by placing a centre of the radius on the alignment of the courtyard wall. In fact, if the two perimeters are compared, in the flanks area, the oval tends to the extrados surface of the ellipse, with a difference of 6.02 cm. Meanwhile, in the central area of the perimeter, the oval tends towards the intrados of the ellipse, with a difference of 4.09 cm. The order of measurement is close to the margin of error of 1 % established in the survey of the Fort carried out in 1984. At that time it was determined that the perimeter was laid out by an ellipse. After the new studies, the Tosca oval equivalent, which has a minor radius located on the wall of the central courtyard, allows us to hypothesize this second solution, with the perimeter laid out using an oval.

Although the equations in the figures are mathematically very different, the formal parameterization of the tracing of the U-shaped battery of San Jorge, could be both an oval and an ellipse. The margin of error in any tracing for both figures can be perfectly absorbed in both hypotheses.

There is a fundamental difference between the two figures, derived from the science of optics of the Enlightenment. The two figures are very different in terms of receiving impact and disrupting the thrust of the projectile. If the impact is perpendicular during the descent of the parabola, the disruption of the oval figure tends to be univectorial, passing through any of the three centres of the oval. In the ellipse, the impact tends to decompose into two vectors passing through the foci located on the major axis.


  1. 1.

    The documents in SHM (9250) include: “Plano del puerto de San Jorge, situado en la marina. Jurisdicción de la plaza de Tortosa” and “Plano del Fuerte de San Jorge” by López Sopeña (1740); “Plano y perfil del repuesto de pólvora del Fuerte de San Jorge a la plaza de Tortosa” and “Plano del Fuerte destacado de San Jorge en Tarragona” probably made by Marcos Serstevens (1750); and “Plano del Fuerte de San Jorge en la costa del gobierno de Tortosa y el último que se encuentra yendo hacia Barcelona” by López Sopeña (1772).

  2. 2.

    “Proyecto de una de las dos baterías que S. M. manda se erijan una en la punta del Franc y otra a la costa opuesta en el puerto de los Alfaques” (AGS, Secretary of War, Legajos, 03327). It was signed by Francisco Llovet, in Barcelona on April 30, 1779 (AGS: MPD, 08, 130).


  1. Abbe Du Fay. 1691. Maniere de fortificante: Selon La Methode De Monsieur De Vauban. Avec un Traite des préliminaire. Paris: Coignard.Google Scholar
  2. Arfe, J. 1585. De varia commensuración para la Esculptura y Architectura. Sevilla: Andrea Pescioni y Juan de León.Google Scholar
  3. Bachot, A. 1587. Le Timon du Capitaine Ab. Bachot, Lequel conduira le lecteur Parmi les guerrières … Paris: Au faubourg Saint-Germain-des-Prés.Google Scholar
  4. Bachot, A. 1598. Le Gouvernail d’Ambroise Bachot, capitaine ingenieur du Roy… Melun: Imprime l’auteur soubz; et aussi s’en trouuera Son en Logis à Paris.Google Scholar
  5. Barrozzi, F. 1586. Admirandum illud geometricum problema tredecim modis demonstratum, quo docet duas lineas … Venitiis, Apud Gratiosum Perchacinum.Google Scholar
  6. Bertotti Scamozzi, V. 1615. L’idea dell’architettura universale di Vinsenzo Scanmozzi architetto véneto divisa in X libri. Venezia: Expenssis Auctore.Google Scholar
  7. Besson, J. 1569. Instrumentorum et machinarum Quas Jacobus Bessonus Delphinas mathematicus et un machinis practer otras cosas excogitavit… s.l. s.n. s.d.Google Scholar
  8. Bianchi, P.F. 1766. Instituzione pratica dell ‘Architettura Civile per la decorazione de’ pubblici, e privati edifici…2 vols. Milano: Gianbattista Bianchi.Google Scholar
  9. Blume, F., K. Lachmann, and A. Rudorff. 1848. Die Schriften der römischen Feldmesser, vol. I. Berlin: Bei Georg Reimer.Google Scholar
  10. Bosse, A. 1665. Traité des pratiques geometrales et perspectives: enseignées dans l’Academie royale de la peinture et sculpture. Paris: Chez l’Auteur en l’Ille du Palais.Google Scholar
  11. Bradshaw, J.W. 1917. Approximate Construction for an Ellipse. The American Mathematical Monthly 24(6): 301–302.CrossRefMathSciNetGoogle Scholar
  12. Busca, G. 1601. Della Architettura militare di Gabriello Busca. Milano: Girolamo Bordoni.Google Scholar
  13. Breymann, G.A. 1849. Allgemeine Bau-Constructions-Lehre, mit besonderer Beziehung auf das Hochbauwesen…, vol. 1. Stuttgart: Hoffmann.Google Scholar
  14. Brizguz y Bru, A.G. 1738. Escuela de Arquitectura civil, en que se contienen los ordenes de Arquitectura, la distribución… Valencia: Oficina de Joseph Thomas Lucas.Google Scholar
  15. Camara, A. 2005. La arquitectura militar del padre Tosca y la formación teórica de los ingenieros entre Austrías y Borbones. In Ingenieros militares de la Monrquía Hispánica en los siglos XVII y XVIII, ed. A. Cámara. Madrid: Ministerio de Defensa.Google Scholar
  16. Camus, M. 1750. Elémens de géométrie théorique et pratique (Cours de mathématique, Seconde Partie). Paris: Durand.Google Scholar
  17. Cataneo, P. 1567. L’architettura di Pietro Cataneo senese: oltre alla quale todos essere stati dall’istesso autore riuisti,… Venice: Aldus.Google Scholar
  18. Cepeda, A. 1669. Epítome de la fortificación moderna. Asii en lo regular, como en lo irregular, reducida a la regla,… Brussels: Por Francisco Foppens.Google Scholar
  19. Chafrión, J. 1687. Plantas de las fortificaciones de las ciudades, plazas y castillos del Estado de Milan. S.l : s.n., s.a.Google Scholar
  20. Chafrión J. 1693. Escuela de Palas o Cursos Mathemáticas. Milan: En la Emprente Real por Marcos Antonio Pandulpho Malatesta.Google Scholar
  21. Choisy, A. 1904. L’art de bâtir chez les égyptiens. Paris: E. Rouveyre.Google Scholar
  22. Davila, A. 1672?. Plazas fortificadas en el Ducado que era de Lorena, con un tratado de geometría practica para traçar figuras regulares… Madrid?: s.n.Google Scholar
  23. De La Rue, J.B. 1728. Traité de la coupe des pierres où, par une méthode facile & abrégée, l’on peut aisément se perfectionner en cette… Paris : De l’Imprimerie royale.Google Scholar
  24. De Villegas, E.D. 1651. Academia de fortificación de plazas y nuevo modo de fortificar una plaza real. Madrid: Alonso de Paredes.Google Scholar
  25. Docci, M., Migliari, R. 2001. Architettura e geometria nel Colosseo di Roma. Pp. 13–24 in Matematica e architettura. Metodi analitici, metodi geometrici e rappresentazioni in architettura. Firenze: Alinea editrice. Università di Firenze. Fac. Architettura.Google Scholar
  26. Dürer, A. 1525. Unterweysung der Messung, mit dem Zirckel und Richtscheyt: in Linien Ebnen vo gantzen Corporen. Nürenberg: Hieronymum Formschneyder.Google Scholar
  27. Dürer, A. 1527. Etliche underricht zu befestigung der Stett, Schlosz, und flecken. Nürenberg: Hieronymus Andreae.Google Scholar
  28. Errard de Bar-le-Duc, J. 1604. Fortification demonstree et reduicte en art par I. Errard de Bar-le-Duc. Paris: s.n.Google Scholar
  29. Fernández, S. 1677. Rudimentos geométricos y militares que propone… Sebastian Fernandez de Medrano. Bruselas: Viuda Vleugart.Google Scholar
  30. French, T. 1911. Manual of Engineering Drawing for Students and Draftsmen. New York: McGraw-Hill Book Co.Google Scholar
  31. Frézier, A.F. 1737. La théorie et la pratique de la Coupe des Pierres. La theorie et la pratique de la coupe des pierres … Tome premier. Strasbourg: J.D. Doulksseker le fils.Google Scholar
  32. García, S. 1681. Compendio de Architectura y Simetría de los templos conforme a la medida del cuerpo humano con algunas demostraciones de geometría. Tratados de Arquitectura y Urbanismo: Serie V. vol.13. Colección Clásicos Tavera. Madrid: Fundación Histórica Tavera.Google Scholar
  33. Generalitat, C. 1990. Catàleg de Monuments i Conjunts Històrico-Artístics de Catalunya. Barcelona: Departament de Cultura.Google Scholar
  34. Gentil, J. M. 1996. La traza oval y la sala capitular de la catedral de Sevilla. Una aproximación geométrica. In: Cuatro edificios sevillanos. Metodologías para su análisis. Sevilla: Demarcación de Sevilla del Colegio Oficial de Arquitectos de Andalucía Occidental.Google Scholar
  35. González de Medina Barba, D. 1599. Examen de Fortificacion, hecho por Don Diego Gonçalez de Medina Barba… Madrid: En la Imprenta del Licenciado Varez.Google Scholar
  36. Heath, T.L. 1896. Apollonius of Perga Treatise on conic sections. Edited in modern notation with introductions including an essay. Cambridge: At the University Press.Google Scholar
  37. Heath, T.L. 1931. A Manual of Greek Mathematics. Oxford: Clarendon Press.Google Scholar
  38. Herz-Fischler, R. 1990. Durer’s Paradox or Why an Ellipse Is Not Egg-Shaped. Mathematics Magazine 63(2): 75–85.CrossRefMathSciNetzbMATHGoogle Scholar
  39. Huerta, S. 2007. Oval Domes: history. Geometry and Mechanics. Nexus Network Journal 9(2): 211–248.CrossRefzbMATHGoogle Scholar
  40. Huxley, G.L. 1959. Anthemius of Tralles. A Study in Later Greek Geometry. Cambridge: Printed by the Eaton Press.zbMATHGoogle Scholar
  41. Kurz, O. 1960. Dürer. In Leonardo and the invention of the ellipsograph, 15–24. Raccolta Vinciana; Archivio Storico del Commune di Milano, 18.Google Scholar
  42. Le Clerc, S. 1669. Pratique de la géometrie, sur le papier et sur le terrain. Paris: Thomas Jolly.Google Scholar
  43. León, F. 1992. Arquitectura y Matemáticas según los tratados españoles del siglo XVIII. Implicaciones sociológicas. Anales del Seminario de Metafisica, 767–780. Núm. Extra. Homenaje a S. Rábade.Google Scholar
  44. López Mozo, A. 2009. Bóvedas de piedra en el Monasterio de El Escorial. Ph.D. Thesis, Escuela Técnica Superior de Arquitectura, Universidad Politécnica de Madrid.Google Scholar
  45. López Mozo, A. 2011. Ovals for any given proportion in architecture: a layout possibly known in the sixteenth century. Nexus Network Journal 13(3): 569–597.CrossRefGoogle Scholar
  46. Lorini, B. 1596. Delle fortificationi di Buonaiuto Lorini libri cinque: ne’ quali si mostra con le piu facili regole la scienza con la pratica, …Venice: Gio. Antonio Rampazetto.Google Scholar
  47. Lorini, B. 1609. Le di fortificationi Buonaiuto Lorini nobile Fiorentino nuovamente ristampate,… con l’aggiunta del Libro sesto. Venice: Francesco Presso Rampazetto.Google Scholar
  48. Lucuze, P. 1772. Principios de fortificación, que contienen las definiciones de los terminos principales de las obras…. Barcelona: Thomas Piferrer.Google Scholar
  49. Lucuze, P. 1773. Disertacion sobre las medidas militares que contiene la razón de preferir el uso de las nacionales al de las forasteras. Barcelona: Por Francisco Suría y Burgada.Google Scholar
  50. Migliari, R. 1995. Ellissi e ovali. Epilogo di un conflitto. Palladio 16(8): 93–102.Google Scholar
  51. Navascués, P. 1974. El libro de arquitectura de Hernan Ruiz, el Joven. Madrid: Escuela Tecnica Superior de Arquitectura de Madrid.Google Scholar
  52. Pedretti, C. 1999. Leonardo. Le macchine. Firenze: Giunti Gruppo Editoriale.Google Scholar
  53. Plo Camin, A. 1767. El Arquitecto práctico, Civil, Militar y Agrimensor, dividido en tres libros…Madrid: En la Imprenta de Pantaleon Aznar.Google Scholar
  54. Rashed, R. 2003. Al-Qûhî et al-Sijzî: sur le compas parfait et le trac´e continu des sections coniques. Arabic Sciences and Philosophy 13: 9–43.MathSciNetGoogle Scholar
  55. Raynaud, D. 2007. Le tracé continu des sections coniques à la Renaissance: applications optico-perspectives, héritage de la tradition mathématique arabe. En. Arabic Sciences and Philosophy 17: 299–345.MathSciNetzbMATHGoogle Scholar
  56. Rojas, C. 1598. Teoría y Práctica de fortificación, conforme las medidas y defensas de los tiempos, repartida en tres partes… Madrid: Por Luis Sanchez.Google Scholar
  57. Rose, P.L. 1970. Renaissance Italian methods of drawing the ellipse and related curves. Physis 12: 371–404.Google Scholar
  58. Rose, P.L. 1973. Humanist Culture and Renaissance Mathematics: the Italian Libraries of the Quattrocento. Studies in the Renaissance 20: 46–105.CrossRefGoogle Scholar
  59. Rosin, P.L. 2001. On Serlio’s Constructions of Ovals. The Mathematical Intelligencer 23(1): 58–69.CrossRefMathSciNetzbMATHGoogle Scholar
  60. Ryff, W.H. 1548. Vitruvius Teutsch: Nemlichen des aller namhafftigisten vn[d] hocherfarnesten, Römischen Architecti, und Kunstreichen Werck oder Bawmeisters, Marci Vitruuij Pollionis, Zehen Bücher von der Architectur vnd künstlichem BawendEin Schlüssel vnd einleytung aller Mathematische[n]. Nürnberg: Johan Petreius.Google Scholar
  61. San Nicolás, L. 1639. Arte y Uso de Architectura. Dirigida al Smo. Patriarca S. Iosepb. Compuesto por Fr. Laurencio de S Nicolas, Agustino Descalço, Maestro de Obras S.l : s.n., s.a.Google Scholar
  62. Sardi, P. 1618. Corona imperiale dell’architettura militare di Pietro Sardi. Venice: Stampata dell’autore.Google Scholar
  63. Serlio, S. 1545. Il Primo libro d’architettura di Sebastiano Serlio, bolognese. Le premier libre d’Architecture de Sebastiano Serlio, Bolognoi, mis en lange Francoyse par Iehan Martin. París: Jean Barbé.Google Scholar
  64. Stevin, S. 1594. De Sterctenbouwing Besehreuen door. Leiden: By Françoys.Google Scholar
  65. Stevin, S. 1605. Tomvs Secvndvs Mathematicorvm Hypomnematvm. Lvgodini Batavorvm: Patius.Google Scholar
  66. Tartaglia, N. 1554. Quesiti, et inventioni diverse de Nicolo Tartalea Brisciano. Venetia: Venturino Rusinelli.Google Scholar
  67. Tartaglia, N. 1560. La Quinta parte del General Trattato de numeri et misure di Nicolo Tartaglia. Venetia: Curtio Troiano.Google Scholar
  68. Torrija, J. 1661. Breve tratado de todo genero de bobedas asi regulares como yrregulares execucion de obrarlas y medirlas… Madrid: Pablo de Val.Google Scholar
  69. Tosca i Mascó, T. V. 1707. Compendio mathematico: Que comprehende Geometria elementar, arithmetica inferior, geometria practica… Tomo I. Valencia: Por Antonio Bordazar.Google Scholar
  70. Tosca i Mascó, T. V. 1710. Compendio mathematico: Que comprehende Trigonometria, Secciones Conicas. Maquinaria Tomo III. Valencia: Por Antonio Bordazar.Google Scholar
  71. Tosca i Mascó, T. V. 1712. Compendio mathematico: Que comprehende Arquitectura civil, montea, y canteria, arquitectura militar, pirotechnia, y artilleria. Tomo V. Valencia: Por Antonio Bordazar.Google Scholar

Copyright information

© Kim Williams Books, Turin 2014

Authors and Affiliations

  • Josep Lluis i Ginovart
    • 1
  • Josep M. Toldrà Domingo
    • 1
  • Gerard Fortuny Anguera
    • 1
  • Agustí Costa Jover
    • 1
    Email author
  • Pau de Sola-Morales Serra
    • 1
  1. 1.ETSAR, Universitat Rovira i VirgiliReusSpain

Personalised recommendations