Nexus Network Journal

, Volume 15, Issue 2, pp 209–225 | Cite as

A Puzzling Set of Stucco Coffers from Portici: Archaeology and Mathematics Working Together



Archaeology and mathematics work together to reconstruct the form and dimensions of a vault originally adorned with a set of twenty-five stucco coffers in the shape of concave octagons, today conserved in the Archaeological Museum in Naples. Measurements were taken to determine the curvature and orientation of the coffers. Two methods used to establish the size of the vault permitted an approximation of the vault width, making it possible to propose limited possibilities for the number of coffers transversally to the vault, and how they were displayed on it. Further studies were made of the decorative scheme in order to suggest a plausible construction process for the coffers with tools and techniques usual at the time, using only arcs of circles. For this, the front side of the coffers was considered to be plane, which led us to establish that they were included in an all-over scheme of squares and that the concentric octagonal frames were very likely drawn from two families of circles. Then differential calculus showed us that the differences due to the plane approximation of the cylindrical shape of the vault were negligible with regard to the precision of the guidelines drawn in situ. Finally we suggest a complete decorative scheme, using various clues such as subject, orientation, curvature and colours of the tesserae decorating the framing.


design analysis surfaces vaults coffers Roman architecture ornamentation decoration geometry differential calculus curvature circles 


  1. Allag Cl., Blanc N., Parlasca K. (2010) Palmyre: stucs trouvés prés de la source Efqa (site de l’hôtel Méridien). Syria 87: 191–227Google Scholar
  2. Balmelle, C., et al. 1985.Le décor géométrique de la mosaïqe romaine. Répertoire graphique et descriptif des compositions linéaires et isotropes. Paris.Google Scholar
  3. Blanc, N. 2013. Le stuc dans l’art romain. Origine et développement d’une technique décorative. (Ier s. av.-IIe s. ap. J.-C.). Bulletin Antieke Beschaving, Suppl. (to appear).Google Scholar
  4. Blazquez, Martinez, et al. 1989.Mosaicos romanos de Lerida y Albacete (Corpus de mosaicos de España, 8). Madrid.Google Scholar
  5. D’Aconzo, P. 2002. Picturae excisae. Conservazione e restauro dei dipinti ercolanesi e pompeiani tra XVIII e XIX secolo. Studi soprintendenza archeologica Pompei, 8. Rome: L’Erma di Bretschneider.Google Scholar
  6. Ling, R. 1976. Stuccowork. Pp. 209-221 in Roman Crafts, D.E Strong and P.D.C. Brown, eds. London.Google Scholar
  7. Mielsch, H. 1975. Römische Stuckreliefs. Mitteilungen des D.A.I. Römische Abteilung. Ergänzungsheft, XXI. Heidelberg: F. H. Kerle.Google Scholar
  8. Pagano, M. 1999. Portici. Ritrovamento di ambiente romano, Rivista di Studi Pompeiani X: 219-220.Google Scholar
  9. Pannuti, U. 1979. Un complesso di stucchi romani provenienti da Portici. Pp. 259-272 in Monumenti antichi XLIX (Monumenti Antichi - Serie monografica e miscellanea, 2, 3). Rome: Accademia dei Lincei.Google Scholar
  10. Pannuti, U. 1983. Il “Giornale degli Scavi” di Ercolano (1738-1756). Memorie dell’Accademia dei Lincei 8, 26: 161-410.Google Scholar
  11. Parzysz, B. 2008. Des ellipses … sans ellipses : les amphithéâtres romains. Bulletin de l’ Association des Professeurs de Mathématiques de L’Enseignement Public 479: 772-780.Google Scholar
  12. Parzysz, B. 2009. Using key diagrams to design and construct Roman geometric mosaics? Nexus Network Journal 11,2: 273-288MATHCrossRefGoogle Scholar
  13. Vetters, H. 1985. Ein Stuckraum in Ephesos. Pp. 335-340 in Pro Arte Antiqua, Festschrift für Hedwig Kenner, vol. II. Vienna.Google Scholar

Copyright information

© Kim Williams Books, Turin 2013

Authors and Affiliations

  1. 1.CNRS-ENS, UMR 8546 (AOROC)Ecole Normale SupérieureParis Cedex 05FRANCE
  2. 2.UFR de Mathématiques case 7018, Laboratoire André RevuzUniversité d’Orléans (France)/ Université Paris-DiderotParis Cedex 13FRANCE

Personalised recommendations