Advertisement

Nexus Network Journal

, Volume 15, Issue 2, pp 195–208 | Cite as

Architectural Geometry and Fabrication-Aware Design

  • Helmut Pottmann
Research

Abstract

Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called “Architectural Geometry”. The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication.

Keywords

architectural geometry freeform architecture discrete differential geometry geometric computing computational design design space exploration fabricationaware design 

References

  1. Almegaard, H., A. Bagger, J. Gravesen, B. Jüttler and Z. Sir, 2007. Surfaces with piecewise linear support functions over spherical triangulations. In: IMA Conference on the Mathematics of Surfaces, pp. 42–63.Google Scholar
  2. Block, P. 2009. Thrust network analysis: Exploring three-dimensional equilibrium. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  3. Block P., Ciblac T., Ochsendorf J. (2006) Real-time limit analysis of vaulted masonry buildings. Computers and Structures 84: 1841–1852CrossRefGoogle Scholar
  4. Block, P. and L. Lachauer. 2011. Closest-fit, compression-only solutions for free form shells. In: IABSE – IASS 2011 London Symposium. Int. Ass. Shell Spatial Structures [electronic].Google Scholar
  5. Block, P. and J. Ochsendorf. 2007. Thrust network analysis: A new methodology for threedimensional equilibrium. J. Int. Assoc. Shell and Spatial Structures 48, 3: 167-173.Google Scholar
  6. Bo, P., H. Pottmann, M. Kilian, W. Wang and J. Wallner. 2011. Circular arc structures. ACM Trans. on Graphics 30 (Proc. SIGGRAPH 2011): 101:1-11.Google Scholar
  7. Bobenko, A. I. and Y. B. Suris. 2009. Discrete Differential Geometry: Integrable Structure. Vol. 98. American Math. Soc.Google Scholar
  8. Bouaziz, S., Y. Schwartzburg, T. Weise and M. Pauly. 2012. Shaping discrete geometry with projections. Computer Graphics Forum 31 (Proc. Symp. Geometry Processing): 1657-1667.Google Scholar
  9. Ceccato, C., L. Hesselgren, M. Pauly, H. Pottmann and J. Wallner, eds. 2010. Advances in Architectural Geometry. Springer.Google Scholar
  10. Deng, B., H. Pottmann and J. Wallner. 2011. Functional webs for freeform architecture. Computer Graphics Forum 30 (Proc. Symp. Geometry Processing): 1369-1378.Google Scholar
  11. Eigensatz, M., M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann and M. Pauly. 2010. Paneling architectural freeform surfaces. ACM Trans. on Graphics 29, 3 (Proc. SIGGRAPH 2010): 45:1-10.Google Scholar
  12. Eigensatz M., Schiftner A. (2011) Paneling the Eiffel tower pavilions. Intelligent Glass Solutions: Complex geometries and freeform building envelopes 4: 41–48Google Scholar
  13. Fu, C.-W., C.-F. Lai, Y. He and D. Cohen-Or. 2010. K-set tileable surfaces. ACM Trans. on Graphics (Proc. SIGGRAPH): 44:1-6.Google Scholar
  14. Gengnagl, C., A. Kilian, N. Palz and F. Scheurer, eds. 2011. Computational Design Modeling: Proceedings of the Design Modeling Symposium Berlin. Springer.Google Scholar
  15. Glymph, J., D. Shelden, C. Ceccato, J. Mussel and H. Schober. 2004. A parametric strategy for freeform glass structures using quadrilateral planar facets. Automation in Contruction 13: 187-202.Google Scholar
  16. Gu, X. D. and S.-T. Yau. 2008. Computational Conformal Geometry. International Press.Google Scholar
  17. Heyman, J. 1995. The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge University Press.Google Scholar
  18. Liu, Y., H. Pottmann, J. Wallner, Y.-L. Yang and W. Wang. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. on Graphics 25, 3 (Proc. SIGGRAPH 2006): 681-689.Google Scholar
  19. Liu, Y., W. Xu, J. Wang, L. Zhu, B. Guo, F. Chen and G. Wang. 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans. on Graphics 30 (Proc. Siggraph Asia): 140: 1-10.Google Scholar
  20. Pirazzi, C. and Y. Weinand. 2006. Geodesic lines on free-form surfaces: optimized grids for timber rib shells. In: Proc. World Conference on Timber Engineering.Google Scholar
  21. Pottmann, H., A. Asperl, M. Hofer and A. Kilian. 2007a. Architectural Geometry. Bentley Institute Press.Google Scholar
  22. Pottmann, H., A. Kilian and M. Hofer, eds. 2008a. Advances in Architectural Geometry. Proceedings of the Conference, Vienna, 13-16 September 2008. Vienna University of Technology.Google Scholar
  23. Pottmann, H., Y. Liu, J. Wallner, A. Bobenko and W. Wang. 2007b. Geometry of multilayer freeform structures for architecture. ACM Trans. on Graphics 26, 3: 65:1-11.Google Scholar
  24. Pottmann, H., A. Schiftner, P. BO, H. Schmiedhofer, W. Wang, N. baldassini and J. Wallner. 2008b. Freeform surfaces from single curved panels. ACM Trans. on Graphics 27, 3 (Proc. SIGGRAPH 2008): 76:1-10.Google Scholar
  25. Sauer, R. 1970. Differenzengeometrie. Springer.Google Scholar
  26. Schiftner, A., M. Höbinger, J. Wallner and H. Pottmann. 2009. Packing circles and sphereson surfaces. ACM Trans. on Graphics 28, 5 (Proc. SIGGRAPH Asia): 139: 1-8.Google Scholar
  27. Shelden, D. 2002. Digital surface representation and the constructibility of Gehry’s architecture. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  28. Singh, M. and S. Schaefer. 2010. Triangle surfaces with discrete equivalence classes. ACM Trans. on Graphics (Proc. SIGGRAPH 2010): 45:1-7.Google Scholar
  29. Troche, C. 2008. Planar hexagonal meshes by tangent plane intersection. Pp. 57-60 in Advances in Architectural Geometry. H. Pottmann, A. Kilian and M. Hofer, eds. Proceedings of the Conference, Vienna, 13-16 September 2008. Vienna University of Technology.Google Scholar
  30. Van Mele, T. and P. Block. 2011. A novel form fnding method for fabric formwork for concrete shells. J. Int. Assoc. Shell and Spatial Structures 52: 217-224.Google Scholar
  31. Vaxman, A. 2012. Modeling polyhedral meshes with affine maps. Computer Graphics Forum 31, proc. Symp. Geometry Processing :1657-1667.Google Scholar
  32. Vouga, E., M. Höbinger, J. Wallner and H. Pottmann. 2012. Design of self-supporting surfaces. ACM Trans. on Graphics 31 (Proc. SIGGRAPH 2012): 87: 1-10.Google Scholar
  33. Wang, W., Y. Liu, D.-M. Yan, B. Chan, R. Ling and F. Sun. 2008. Hexagonal meshes with planar faces. Tech. Rep. TR-2008-13 (CS series), University of Hong Kong.Google Scholar
  34. Yang, Y.-L., Y.-J. Yang, H. pottmann and N. Mitra. 2011. Shape space exploration of constrained meshes. ACM Trans. Graphics 30 (Proc. SIGGRAPH Asia): 124:1-11.Google Scholar
  35. Zadravec, M., A. schiftner and J. Wallner. 2010. Designing quad-dominant meshes with planar faces. Computer Graphics Forum 29, 5: 1671-1679.Google Scholar
  36. Zimmer, H., M. Campen, D. Bommes and L. Kobbelt. 2012. Rationalization of triangle-based point-folding structures. Computer Graphics Forum 31 (Proc. Eurographics): 611-620.Google Scholar

Copyright information

© Kim Williams Books, Turin 2013

Authors and Affiliations

  1. 1.King Abdullah University of Science and TechnologyThuwalSAUDI ARABIA

Personalised recommendations