Advertisement

Nexus Network Journal

, Volume 15, Issue 2, pp 227–239 | Cite as

Minimal Surfaces and Architecture: New Forms

Research

Abstract

Michele Emmer discusses the relations between soap films, arts, mathematics, visual arts, architecture with very recent examples.

It’s because I don’t do anything, I chatter a lot, you see, it’s already a month that I’ve got into the habit of talking a lot, sitting for days on end in a corner with my brain chasing after fancies. It is perhaps something serious? No, it’s nothing serious. They are soap bubbles, pure chimeras that attract my imagination.

Fedor Dostoevsky, Crime and Punishment

Keywords

Soap bubbles soap films 

References

  1. Almgren, F. and J. E. Taylor. 1976. The Geometry of Soap Bubbles and Soap Films. Scientific American, July 1976: 82–93.Google Scholar
  2. Arnez, A., K. Polthier, M. Steffens and C. Teitzel. 1999. Touching Soap Films. Film DVD, colour, sound, 41 m. Berlin: Springer.Google Scholar
  3. Bosse, C. 2008. L’architettura delle bolle di sapone. Pp. 43–56 in Matematica e cultura 2008, M. Emmer, ed. Milan: Springer–Verlag Italia.Google Scholar
  4. Boys C. V. (1959) Soap Bubbles: Their Colours and the Forces which Mould Them. Dover, New YorkGoogle Scholar
  5. Brakke, K. 2009. Ken Brakke’s homepage at Susquehanna University http://www.susqu.edu/brakke/. Last accessed 20 December 2012.
  6. De gennes, P. G. 1992. Soft matter. Science 256 (April 24, 1992): 495–497.Google Scholar
  7. Emmer, M. 1979. Soap Bubbles. Film and DVD, colour, sound, 25 m. Rome: Emmer Prod.Google Scholar
  8. Emmer, M. 1993. Soap Bubbles in Art and Science: from the Past to the Future of Math Art. Pp. 135–142 in The Visual Mind, M. Emmer, ed. Cambridge, MA: MIT Press.Google Scholar
  9. Emmer, M. 2009. Bolle di sapone tra arte e matematica. Torino: Bollati Boringhieri.Google Scholar
  10. Gabbrielli, R., A. J. Meaghera, D. Weairea, K. A. Brakke and S. Hutzler. 2012. An experimental realisation of the Weaire–Phelan structure in monodisperse liquid foam, Philosophical Magazine Letters 92, 1 (January 2012): 1–6.Google Scholar
  11. Morgan F. (2008) Existence of Least–Perimeter Partitions. Philosophical Magazine Letters 88(9): 647–650CrossRefGoogle Scholar
  12. Newton, I. 2007. Opticks: Or, a treatise of the Reflections, Refractions, Inflections & Colours of Light (1704). New York: Cosimo Classics.Google Scholar
  13. Plateau, J. 1873. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaire. Paris: Gauthier–Villars.Google Scholar
  14. Otto, F. ed. 1969. Tensile Structures. Design, Structure and Calculations of Buildings of Cables, Nets and Membranes. Cambridge, MA: MIT Press.Google Scholar
  15. Taylor J. E. (1976) The Structure of Singularities in Soap–Bubble–Like and Soap–Film–Like Minimal Surfaces. Annals of Mathematics 103: 489–539MathSciNetCrossRefGoogle Scholar
  16. Thomson, W. [Lord Kelvin]. 1887. On the Division of Space with Minimum Partitional Area. Philosophical Magazine 24, 151: 503–514.Google Scholar
  17. Thompson, D. W. 1942. On Growth and Form, vol. 1. Cambridge: Cambridge University Press.Google Scholar
  18. Walliser, T. 2009. Other geometries in architecture: bubbles, knots and minimall surfaces. Pp. 91–111 in Mathknow, M. Emmer and A. Quarteroni, eds. Milan: Springer–Verlag Italia.Google Scholar
  19. Walliser, T. 2011. Il design digitale nell’architettura – oltre la geometria classica. Pp. 69–81 in Matematica e cultura 2011, M. Emmer, ed. Milan: Springer–Verlag Italia.Google Scholar

Copyright information

© Kim Williams Books, Turin 2013

Authors and Affiliations

  1. 1.Dipartimento di Matematica “G. Castelnuovo”Università di Roma “La Sapienza”RomeITALY

Personalised recommendations