Skip to main content
Log in

Toxicity, repellency and chemical composition of essential oils from Cymbopogon species against red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae)

  • Research Article
  • Published:
Journal of Consumer Protection and Food Safety Aims and scope Submit manuscript

Abstract

The red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is one of the major destructive pests to stored milled products. It has developed resistance to chemical fumigants. Therefore, finding an eco-friendly biofumigant for the management of the pest is of great importance. The main aim of this study was to evaluate the insecticidal efficacy of essential oil from Cymbopogon flexuosus (lemongrass), Cymbopogon winterianus (citronella), and Cymbopogon martini (palmarosa) against T. castaneum and its chemical composition. GC–MS analysis was conducted and results showed that the essential oils of C. flexuosus, C. winterianus and C. martini are rich in citral, neral, cironellol, D-lemonene, geraniol and geranyl acetate respectively. The essential oils from C. flexuosus, C. winterianus and C. martini had a very strong repellent activity to adults of T. castaneum and were significantly repellent at 1.41 µL/cm2. The essential oil of C. flexuosus had a high fumigant activity against adults of T. castaneum with LC50 values of 27.1 and 4.23 µL/L after 24 and 48 h exposure. Furthermore, essential oils of C. winterianus had a high contact toxicity to T. castaneum with LD50 values of 2.1 and 1.5 µg/L after 24 and 48 h exposure, followed by 2.5 and 1.6 µg/L of C. martini and 4.09 and 2.07 µg/L of C. flexuosus after 24 and 48 h exposure respectively. The results show that essential oils extracted from the Cymbopogon species are natural insecticides and can be used as an efficient management tool against T. castaneum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Abdelgaleil SA, Mohamed MI, Badawy ME, El-arami SA (2009) Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J Chem Ecol 35:518–525

    CAS  PubMed  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    CAS  PubMed  Google Scholar 

  • Avoseh O, Oyedeji O, Rungqu P, Nkeh-Chungag B, Oyedeji A (2015) Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 20:7438–7453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayvaz A, Karaborklu S, Sagdic O (2009) Fumigant Toxicity of Five Essential Oils Against the Eggs of Ephestia kuehniella Zeller and Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Asian J Chem 21:596–604

    CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    CAS  PubMed  Google Scholar 

  • Bell CH, Wilson SM (1995) Phosphine tolerance and resistance in Trogoderma granarium everts (Coleoptera: Dermestidae). J Stored Prod Res 31:199–205

    CAS  Google Scholar 

  • Bittner ML, Casanueva ME, Arbert CC, Aguilera MA, Hernández VJ, Becerra JV (2008) Effects of essential oils from five plant species against the granary weevils Sitophilus zeamais and Acanthoscelides obtectus (Coleoptera). J Chil Chem Soc 53:1444–1448

    Google Scholar 

  • Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE (2012) Repellency and toxicity of essential oils from Cymbopogon martinii, Cymbopogon flexuosus and Lippia origanoides cultivated in Colombia against Triboliumcastaneum. J Stored Prod Res 50:62–65

    CAS  Google Scholar 

  • Casida JE (2012) The greening of pesticide-environment interactions: some personal observations. Environ Health Perspect 120:487–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Champ BR, Dyte CE (1976) Report of the FAO global survey of pesticide susceptibility of stored grain pests. FAO, Rome, Italy

  • Chu SS, Liu ZL, Du SS, Deng ZW (2012) Chemical composition and insecticidal activity against Sitophilus zeamais of the essential oils derived from Artemisia giraldii and Artemisia subdigitata. Molecules 17:7255–7265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11:315–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Don-Perdo KN (1989) Mechanism of the action of some vegetable oils against Sitophilus zeamais (Motsch) (Coleoptera: Curculionidae) on wheat. J Stored Prod Res 25:217–223

    Google Scholar 

  • Ebadollahi A, Nouri-Ganbalani G, Hoseini SA, Sadeghi GR (2012) Insecticidal activity of essential oils of five aromatic plants against Callosobruchus maculatus F (Coleoptera: Bruchidae) under laboratory conditions. J Essent Oil Bear Pl 15:256–262

    Google Scholar 

  • Edwin MS, Leornard G, Elijah G (2012) Isolation and Identification of essential oil from Cymbopogon Citratus (Stapf) using GC-MS and FT-IR. Chem Mater Res 4:13–22

    Google Scholar 

  • El-Bakry AM, Abdel-Aziz NF, Sammour EA, Abdelgaleil SAM (2016) Insecticidal activity of natural plant essential oils against some stored product insects and their side effects on wheat seed germination. Egypt J Biol Pest Con 26:83

    Google Scholar 

  • Filomeno CA, Barbosa LCA, Teixeira RR, Pinheiro AL, de Sá Farias E, de Paula Silva EM, Picanço MC (2017) Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind Crops Prod 109:374–383

    CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Garcia M, Donadel OJ, Ardanaz C, Tonn CE, Sosa ME (2005) Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Manag Sci 61:612–618

    CAS  PubMed  Google Scholar 

  • Garry VF, Griffith J, Danzl TJ, Nelson RL, Whorton EB, Krueger LA, Cervenka J (1989) Human genotoxicity: pesticide applicators and phosphine. Science 246:251–255

    CAS  PubMed  Google Scholar 

  • Gillott C (2005) Entomology. Springer, New York

    Google Scholar 

  • Goel D, Goel R, Singh V, Ali M, Mallavarapu GR, Kumar S (2007) Composition of the essential oil from the root of Artemisia annua. J Nat Med 61:458

    CAS  Google Scholar 

  • Guenther E (1950) The essention oils. D. Van Nostrand Company Inc, New York

    Google Scholar 

  • Gueye MT, Cissokho PS, Goergen G, Ndiaye S, Seck D, Gueye G, Lognay G (2012) Efficacy of powdered maize cobs against the maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) in stored maize in Senegal. Int J Trop Insect Sci 32:94–100

    Google Scholar 

  • Hamid AA, Aiyelaagbe OO, Usman LA (2011) Essential oils: its medicinal and pharmacological uses. Int J Curr Res 33:86–98

    Google Scholar 

  • Hikal WM, Baeshen RS, Said-Al Ahl HA (2017) Botanical insecticide as simple extractives for pest control. Cogent Biol 3:1404274

    Google Scholar 

  • Hu J, Wang W, Dai J, Zhu L (2019) Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Ind Crops Prod 128:29–37

    CAS  Google Scholar 

  • Huang Y, Ho SH (1998) Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J Stored Prod Res 34:11–17

    CAS  Google Scholar 

  • Huang Y, Ho SH, Kini RM (1999) Bioactivitieses of safrole and isosafrole on Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J Econ Entomol 92:676–683

    CAS  Google Scholar 

  • Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–46

    CAS  PubMed  Google Scholar 

  • Isman MB, Machial CM, Miresmailli S, Bainard LD (2007) Essential oil-based pesticides: new insights from old chemistry. Pesticide chemistry. Wiley, Weinheim, pp 201–209

    Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem Rev 10:197–204

    CAS  Google Scholar 

  • Kain P, Boyle SM, Tharadra SK, Guda T, Pham C, Dahanukar A, Ray A (2013) Odour receptors and neurons for DEET and new insect repellent. Nature 502:507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalemba DAAK, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    CAS  PubMed  Google Scholar 

  • Keita SM, Vincent C, Schmit JP, Ramaswamy S, Belanger A (2000) Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res 36:355–364

    CAS  PubMed  Google Scholar 

  • Khanuja SP, Shasany AK, Pawar A, Lal RK, Darokar MP, Naqvi AA, Kumar S (2005) Essential oil constituents and RAPD markers to establish species relationship in Cymbopogon spreng (Poaceae). Biochem Syst Ecol 33(2):171–186

    CAS  Google Scholar 

  • Kim SI, Lee DM (2014) Toxicity of basil and orange essential oils and their components against two coleopteran stored products insect pests. J Asia Pac Entomol 17:13–17

    CAS  Google Scholar 

  • Kim J, Park IK (2008) Fumigant toxicity of Korean medicinal plant essential oils and components from Asiasarum sieboldi root against Sitophilus oryzae L. Flavour Fragr J 23:79–83

    CAS  Google Scholar 

  • Kim SI, Park C, Ohh MH, Cho HC, Ahn YJ (2003) Contact and fumigant activities of aromatic plant extracts and essential oils against Lasioderma serricorne (Coleoptera: Anobiidae). J Stored Prod Res 39:11–19

    CAS  Google Scholar 

  • Kiran S, Prakash B (2015) Toxicity and biochemical efficacy of chemically characterized Rosmarinus officinalis essential oil against Sitophilus oryzae and Oryzaephilus surinamensis. Ind Crops Prod 74:817–823

    CAS  Google Scholar 

  • Korunic Z (1998) Diatomaceous earths, a group of natural insecticides. J Stored Prod Res 34:87–97

    Google Scholar 

  • Lee BH, Choi WS, Lee SE, Park BS (2001) Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot 20:317–320

    CAS  Google Scholar 

  • Liu ZL, Ho SH (1999) Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). J Stored Prod Res 35:317–3280

    Google Scholar 

  • Moore SJ (2014) Plant-based insect repellents. In: Debboun M, Frances SP Strickman D (eds), Insect repellents handbook, 2nd edn, CRC Press, Boca Raton, pp 179-213

  • Nenaah GE, Ibrahim SJA, Al-Assiuty BA (2015) Chemical composition, insecticidal activity and persistence of three Asteraceae essential oils and their nano emulsions against Callosobruchus maculatus(F.). J Stored Prod Res 61:9–16

    Google Scholar 

  • Nerio L, Olivero-Verbel J, Stashenko E (2009) Repellency activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J Stored Prod Res 45:212–214

    CAS  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresource Technol 101:372–378

    CAS  Google Scholar 

  • Padin SB, Fuse C, Urrutia MI, Dal Bello GM (2013) Toxicity and repellency of nine medicinal plants against Tribolium castaneum in stored wheat. B Insectol 66:45–49

    Google Scholar 

  • Pandey AK, Rai MK, Acharya D (2003) Chemical composition and antimycotic activity of the essential oils of corn mint (Mentha arvensis) and lemon grass (Cymbopogon flexuosus) against human pathogenic fungi. Pharm Biol 41:421–425

    CAS  Google Scholar 

  • Prashar A, Hili P, Veness RG, Evans CS (2003) Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochemistry 63(5):569–575

    CAS  PubMed  Google Scholar 

  • Price DN, Berry MS (2006) Comparison of effects octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J Insect Physiol 52:309–319

    CAS  PubMed  Google Scholar 

  • Rajashekar Y, Rao LJM, Shivanandappa T (2012) Decaleside: a new class of natural insecticides targeting tarsal gustatory sites. Naturwissenschaften 99:843–852

    CAS  PubMed  Google Scholar 

  • Rajashekar Y, Kumar HV, Ravindra KV, Bakthavatsalam N (2013) Isolation and characterization of biofumigant from leaves of Lantana camara for the control of stored grain insect pests. Ind Crops Prod 51:224–228

    CAS  Google Scholar 

  • Rajashekar Y, Raghavendra A, Bakthavatsalam N (2014) Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of Lantana camara in stored grain and household insect pests. BioMed Res Int 2014:187019

  • Rajashekar Y, Tonsing N, Shantibala T, Manjunath JR (2016) 2, 3-Dimethylmaleic anhydride (3, 4-Dimethyl-2, 5-furandione): a plant derived insecticidal molecule from Colocasia esculenta var. esculenta (L.) Schott. Sci Rep 6:20546

  • Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored-product insect control. J Stored Prod Res 44:126–135

    CAS  Google Scholar 

  • Reddy PV, Rajashekar Y, Khamrunissa B, Leelaja BC, Rajendran S (2007) The relation between phosphine sorption and terminal gas concentration in successful fumigation of food commodities. Pest Manag Sci 69:96–103

    Google Scholar 

  • Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev 2:25–34

    Google Scholar 

  • Regnault-Roger C, Vincent C, Arnason JT (2012) Essential oils in insect control: Low-risk products in a high-stakes world. Annu Rev Entomol 57:405–424

    CAS  PubMed  Google Scholar 

  • Russell RJ, Claudianos C, Campbell PM, Horne I, Sutherland TD, Oakeshott JG (2004) Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pestic Biochem Phys 79:84–93

    CAS  Google Scholar 

  • Sahaf BZ, Moharramipour S, Meshkatalsadat MH (2008) Fumigant toxicity of essential oil from Vitex pseudo-negundo against Tribolium castaneum (Herbst) and Sitophilus oryzae (L.). J Asia-Pac Entomol 11:175–179

  • Sampson BJ, Tabanca N, Kirimer NE, Demirci B, Baser KHC, Khan IA, Wedge DE (2005) Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Manag Sci 61:1122–1128

    CAS  PubMed  Google Scholar 

  • Schaneberg BT, Khan IA (2002) Comparison of extraction methods for marker compounds in the essential oil of Lemongrass by GC. J Agric Food Chem 50:1345–1349

    CAS  PubMed  Google Scholar 

  • Shaaya E, Ravid U, Paster N, Juven B, Zisman U, Pissarev V (1991) Insecticidal activity of essential oils against four major stored product insects. J Chem Ecol 17:499–504

    CAS  PubMed  Google Scholar 

  • Singh KD, Labala RK, Devi TB, Singh NI, Chanu HD, Sougrakpam S, Rajashekar Y (2017) Biochemical efficacy, molecular docking and inhibitory effect of 2,3-dimethylmaleic anhydride on insect acetylcholinesterase. Sci Rep 7:12483

    PubMed  PubMed Central  Google Scholar 

  • Sousa RMO, Rosa JS, Oliveira L (2015) Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Ind Crops Prod 63:226–237

    CAS  Google Scholar 

  • Stefanazzi N, Stadler T, Ferrero A (2011) Composition and toxic, repellent and feeding detterant activity of essential oils against the stored-grain pests Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Pest Manag Sci 67:639–646

    CAS  PubMed  Google Scholar 

  • Subramanyam B, Hagstrum DW (1995) Resistance measurement and management. In: Subramanyam B, Hagstrum D (eds) Integrated Management of Insects in Stored Products. Marcel Dekker Inc., New York, pp 331–397

  • Suthisut D, Fields PG, Chandrapatya A (2011) Contact toxicity, feeding reduction, and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. J Econ Entomol 104:1445–1454

    CAS  PubMed  Google Scholar 

  • Tapondjou AL, Adler C, Fontem DA, Bouda H, Reichmuth CH (2005) Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J Stored Prod Res 41:91–102

    CAS  Google Scholar 

  • Upadhyay N, Singh VK, Dwivedy AK, Das S, Chaudhari AK, Dubey NK (2019) Assessment of Melissa officinalis L. essential oil as an eco-friendly approach against biodeterioration of wheat flour caused by Tribolium castaneum Herbst. Environ Sci Pollut Res 26(14):14036–14049

  • Wang J, Zhu F, Zhou XM, Niu CY, Lei CL (2006) Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 42:339–347

    CAS  Google Scholar 

  • Weaver DK, Subramanyam B (2000) Botanicals. Alternatives to pesticides in stored-product IPM. Springer, Boston, pp 303–320

    Google Scholar 

  • Wenqiang G, Shufen L, Ruixiang Y, Shaokun T, Can Q (2007) Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. J Food Chem 10:1558–1564

    Google Scholar 

  • White NDG, Leesch JG (1995) Chemical control. In: Subramanyam B, Hagstrum D (eds) Integrated management of insects in stored products. Marcel Dekker Inc., New York, pp 287–330

  • Zapata N, Smagghe G (2010) Repellency and toxicity of essential oils from the leaves and bark of Laurelia sempervirens and Drimys winteri against Tribolium castaneum. Ind Crops Prod 32:405–410

    CAS  Google Scholar 

  • Zhang Z, Guo SS, Zhang WJ, Geng ZF, Liang JY, Du SS, Deng ZW (2017) Essential oil and polyacetylenes from Artemisia ordosica and their bioactivities against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Ind Crop Prod 100:132–137

    CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Director of the Institute of Bioresources and Sustainable Development, Manipur, India for his keen interest in this study. The first author acknowledges the financial support by the Department of Biotechnology, New Delhi, India under the IBSD-Partnership project programme (IBSD/A1/Partnership/2016/7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yallappa Rajashekar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, M.A., Sahoo, D., Singh, T.B. et al. Toxicity, repellency and chemical composition of essential oils from Cymbopogon species against red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). J Consum Prot Food Saf 15, 181–191 (2020). https://doi.org/10.1007/s00003-019-01264-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00003-019-01264-y

Keywords

Navigation