Effect of corn lectins on the intestinal transport of trace elements

Abstract

The absorption of iron, copper, zinc, and cobalt deriving from the diet and supplements varies, depending on the form of these trace elements and the presence of absorption inhibitors. The objective of this study was to examine the absorption of iron, copper, zinc, and cobalt in the presence of corn lectin as a possible inhibitor of intestinal absorption. The highest level of inhibition was shown in bull in vitro intestinal segments: incubation with corn lectins reduced the absorption of copper by 35.5%, of zinc by 28%, and of cobalt by 17.3%. It caused no observable effect on iron absorption. The addition of N-acetylgalactosamine neutralised the inhibitory effect of corn lectins and restored the absorption of the trace elements. The levels of copper and iron in the blood of rats receiving a diet supplemented with lyophilized corn lectins, decreased by 11.3% and 16.4%, respectively. Our results thus suggest that corn lectins may act as absorption inhibitors of iron, copper, zinc, and cobalt, most likely through blocking the transport of elements across the apical membrane of enterocytes. The present study suggests that individuals should consider their trace element status if their diet includes high amounts of raw corn. However, additional in vivo studies are required to confirm these results.

This is a preview of subscription content, access via your institution.

References

  1. Afifi AA, Azen SP (1979) Statistical analysis, a computer oriented approach (Academic Press, New York-San Francisco’, London: a subsidiary of Harcourt Brace Jovanovlch, Publishers)

  2. Angelova MG, Petkova-Marinova TV, Pogorielov MV, Loboda AN, Nedkova-Kolarova VN, Bozhinova AN (2014) Trace element status (iron, zinc, copper, chromium, cobalt, and nickel) in iron-deficiency anaemia of children under 3 years. Anemia 2014:1–8

    Google Scholar 

  3. Barthe L, Woodley JF, Kenworthy S, Houin G (1998) An improved everted gut sac as a simple and accurate technique to measure paracellular transport across the small intestine. Eur J Drug Metab Pharmacokinet 23:313–323

    CAS  PubMed  Google Scholar 

  4. Bhattacharyya L, Brewer CF, Brown RD, Koenig SH (1984) Preparation and characterization of Ca2 + -Zn2 + -derivatives of lentil and pea lectins and comparison with the native forms. Biochem Biophys Res Commun 124:857–862

    CAS  PubMed  Google Scholar 

  5. Bothwell TH, Clydesdale FM, Cook JD, Dallman PR, Hallberg L, Van Campen D, Wolf, WJ (1982) The effect of cereals and legumes on iron availability. Report of the International Nutritional Anemia Consultative Group (INACG). Nutrition Foundation, Washington, DC

  6. Bouckaert J, Poortmans F, Wyns L, Loris R (1996) Sequential structural changes upon zinc and calcium binding to metal-free concanavalin A. J Biol Chem 271:16144–16150

    CAS  PubMed  Google Scholar 

  7. Cancelo-Hidalgo MJ, Castelo-Branco C, Palacios S, Haya-Palazuelos J, Ciria-Recasens M, Manasanch J, Pérez-Edo L (2013) Tolerability of different oral iron supplements: a systematic review. Curr Med Res Opin 29:291–303

    CAS  PubMed  Google Scholar 

  8. Cohen L, Sekler I, Hershfinkel M (2014) The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis 5:e1307

    CAS  PubMed  PubMed Central  Google Scholar 

  9. de Benoist B, Cogswell M, McLean E (2008) Worldwide prevalence of anaemia 1993–2005. Geneva, Switzerland

  10. de Oliveira JTA, Pusztai A, Grant G (1988) Changes in organs and tissues induced by feeding of purified kidney bean (Phaseolus vulgaris) lectins. Nutr Res 8:943–947

    Google Scholar 

  11. Donatucci DA, Liener IE, Gross CJ (1987) Binding of navy bean (Phaseolus vulgaris) lectin to the intestinal cells of the rat and its effect on the absorption of glucose. J Nutr 117:2154–2160

    CAS  PubMed  Google Scholar 

  12. Ferruzza S, Scacchi M, Scarino ML, Sambuy Y (2002) Iron and copper alter tight junction permeability in human intestinal Caco-2 cells by distinct mechanisms. Toxicol In Vitro 16:399–404

    CAS  PubMed  Google Scholar 

  13. Glade MJ, Meguid MM (2018) A glance at…antioxidant and antiinflammatory properties of dietary cobalt. Nutrition 46:62–66

    CAS  PubMed  Google Scholar 

  14. Goldstein IJ, Hughes RC, Monsigny M, Osawa T, Sharon N (1980) What should be called a lectin? Nature 285:66

    Google Scholar 

  15. Grant G, Alonso R, Edwards JE, Murray S (2000) Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old Hooded-Lister rats but only soya beans induce growth of the pancreas. Pancreas 20:305–312

    CAS  PubMed  Google Scholar 

  16. Greer F, Pusztai A (1985) Toxicity of kidney bean (Phaseolus vulgaris) in rats: changes in intestinal permeability. Digestion 32:42–46

    CAS  PubMed  Google Scholar 

  17. Gulec S, Anderson GJ, Collins JF (2014) Mechanistic and regulatory aspects of intestinal iron absorption. Am J Physiol Gastrointest Liver Physiol 307:G397–G409

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Haefner S, Knietsch A, Scholten E, Braun J, Lohscheidt M, Zelder O (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol 68:588–597

    CAS  PubMed  Google Scholar 

  19. Hamilton KL, Butt AG (2013) Glucose transport into everted sacs of the small intestine of mice. Adv Physiol Educ 37:415–426

    PubMed  Google Scholar 

  20. Higuchi M, Suga M, Iwai K (1983) Participation of lectin in biological effects of raw winged bean seeds on rats. Agric Biol Chem 47:1879–1886

    CAS  Google Scholar 

  21. Hisayasu S, Orimo H, Migita S, Ikeda Y, Satoh K, Shinjo (Kanda) S, Hirai Y, Yoshino Y (1992) Soybean protein isolate and soybean lectin inhibit iron absorption in rats. J Nutr 122:1190–1196

    CAS  PubMed  Google Scholar 

  22. Hurrell RF (2003) Influence of vegetable protein sources on trace element and mineral bioavailability. J Nutr 133:2973S–2977S

    PubMed  Google Scholar 

  23. Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jindal S, Soni GL, Singh R (1982) Effect of feeding of lectins from lentils and peas on the intestinal and hepatic enzymes of albino rats. J Plant Foods 4:95–103

    CAS  Google Scholar 

  25. Kantardjieff KA, Höchtl P, Segelke BW, Tao FM, Rupp B (2002) Concanavalin A in a dimeric crystal form: revisiting structural accuracy and molecular flexibility. Acta Crystallogr D Biol Crystallogr 58:735–743

    PubMed  Google Scholar 

  26. Karlíčková J, Macáková K, Říha M, Pinheiro LMT, Filipský T, Horňasová V, Hrdina R, Mladěnka P (2015) Isoflavones reduce copper with minimal impact on iron in vitro. Oxid Med Cell Longev 2015:1–11

    Google Scholar 

  27. Kendall MG, Stuart A (1973) The advanced theory of statistics, 3rd edn. Hafner Publishing, New York

    Google Scholar 

  28. Kiela PR, Ghishan FK (2016) Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol 30:145–159

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim YS, Brophy EJ, Nicholson JA (1976) Rat intestinal brush border membrane peptidases II enzymatic properties, immunochemistry, and interactions with lectins of two different forms of the enzyme. J Biol Chem 251:3206–3212

    CAS  PubMed  Google Scholar 

  30. Kittur FS, Lalgondar M, Yu HY, Bevan DR, Esen A (2007) Maize β-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for β-glucosidase aggregation. J Biol Chem 282:7299–7311

    CAS  PubMed  Google Scholar 

  31. Kobayashi Y, Tateno H, Ogawa H, Yamamoto K, Hirabayashi J (2014) Comprehensive list of lectins: origins, natures, and carbohydrate specificities. In: Lectins, J Hirabayashi (eds) Springer, New York, pp 555–577

  32. Liener IE (1983) Naturally occurring toxicants in foods and their significance in the human diet. Arch Toxicol Suppl 6:153–166

    CAS  PubMed  Google Scholar 

  33. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L (2016) Iron deficiency anaemia. The Lancet 387:907–916

    CAS  Google Scholar 

  34. Martínez-Cruz M, Zenteno E, Córdoba F (2001) Purification and characterization of a galactose-specific lectin from corn (Zea mays) coleoptile. Biochim Biophys Acta 1568:37–44

    PubMed  Google Scholar 

  35. Mateer SW, Cardona J, Marks E, Goggin BJ, Hua S, Keely S (2016) Ex vivo intestinal sacs to assess mucosal permeability in models of gastrointestinal disease. J Vis Exp 2016:53250

    Google Scholar 

  36. Menon AV, Chang J, Kim J (2016) Mechanisms of divalent metal toxicity in affective disorders. Toxicology 339:58–72

    CAS  PubMed  Google Scholar 

  37. Millan M, García-Granero E, Flor B, García-Botello S, Lledo S (2006) Early prediction of anastomotic leak in colorectal cancer surgery by intramucosal pH. Dis Colon Rectum 49:595–601

    PubMed  Google Scholar 

  38. Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS, Spears JW, Thiele DJ (2010) Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem 285:32385–32392

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nuss ET, Tanumihardjo SA (2010) Maize: a paramount staple crop in the context of global nutrition. Compr Rev Food Sci Food Saf 9:417–436

    CAS  Google Scholar 

  40. Pusztai A (1989) Transport of proteins through the membranes of the adult gastro-intestinal tract—a potential for drug delivery? Adv Drug Deliv Rev 3:215–228

    CAS  Google Scholar 

  41. Pusztai A, Grant G (1997) Assessment of lectin inactivation by heat and digestion in lectin methods and protocols. Humana Press, New Jersey, pp 505–514

    Google Scholar 

  42. Pusztai A, Clarke EMW, King TP (1979) The nutritional toxicity of Phaseolus vulgaris lectins. Proc Nutr Soc 38:115–120

    CAS  PubMed  Google Scholar 

  43. Simovich M, Hainsworth LN, Fields PA, Umbreit JN, Conrad ME (2003) Localization of the iron transport proteins mobilferrin and DMT-1 in the duodenum: the surprising role of mucin. Am J Hematol 74:32–45

    CAS  PubMed  Google Scholar 

  44. Stafford E, Behnke WD, Bhattacharyya L, Brewer CF (1986) Circular dichroism studies of cobalt substituted lentil lectin. Biochem Biophys Res Commun 136:438–444

    CAS  PubMed  Google Scholar 

  45. Urbanavičius L (2011) How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg 3:59

    PubMed  PubMed Central  Google Scholar 

  46. Wang D, Song Y, Li J, Wang C, Li F (2011) Structure and metal ion binding of the first transmembrane domain of DMT1. Biochim Biophys Acta BBA Biomembr 1808:1639–1644

    CAS  Google Scholar 

  47. Weinborn V, Pizarro F, Olivares M, Brito A, Arredondo M, Flores S, Valenzuela C (2015) The effect of plant proteins derived from cereals and legumes on heme iron absorption. Nutrients 7:8977–8986

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol 123:116–125

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wyman S, Simpson RJ, McKie AT, Sharp PA (2008) Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 582:1901–1906

    CAS  PubMed  Google Scholar 

  50. Yamaji S, Tennant J, Tandy S, Williams M, Singh Srai SK, Sharp P (2001) Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS Lett 507:137–141

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The statistical analysis was carried out under the supervision of Associate Professor Leonov V.P.

Funding

This work was financed by the UO VGAVM. The funding organisation did not participate in any of the following: the collection, analysis, or interpretation of data, the preparation of the article, or the decision to publish.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yury K. Kavalionak.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary material 1 (PDF 234 kb)

3_2019_1261_MOESM2_ESM.mp4

Representative video of the running intestinal absorption study device. Trace element concentration in the samples of working solutions, mucous and serous membranes, and intestinal walls was determined after a 30 min incubation (MP4 1765kb)

Composition of the homemade rats’ diet used in this study (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dabravolski, S.A., Kavalionak, Y.K. Effect of corn lectins on the intestinal transport of trace elements. J Consum Prot Food Saf 15, 163–170 (2020). https://doi.org/10.1007/s00003-019-01261-1

Download citation

Keywords

  • Corn lectins
  • Trace elements
  • Bull intestine
  • Rat
  • Absorption