Skip to main content

Advertisement

Log in

Classification, extraction and current analytical approaches for detection of pesticides in various food products

  • Review
  • Published:
Journal of Consumer Protection and Food Safety Aims and scope Submit manuscript

Abstract

In recent years, food safety and environmental concerns became a significant issue, especially in developing countries. Pesticides have been applied broadly in agriculture to enhance the production and quality of the agricultural products and in order to decrease the energy cost. Pesticides are non-biodegradable chemical compounds and commonly used in agriculture for pest control and to increase yield production. However, excessive usage of pesticides may cause severe health problems as well as environmental pollution, even at low concentrations. Hence, a lot of research is focused on methods to determine the presence of pesticides in different food matrices. It is imperative to develop sensitive detection methods for reliable quantification of the presence of pesticides. This review critically emphasizes recent literature from 2015 to 2019 and an up-to-date overview of analytical methods as well as extraction methods to detect pesticide residues in various food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alavanja MC, Sprince NL, Oliver E, Whitten P, Lynch CF, Gillette PP, Logsden-Sacket N, Zwerling C (2001) Nested case-control analysis of high pesticide exposure events from the Agricultural Health Study. Am J Ind Med 39(6):557–563

    Article  CAS  PubMed  Google Scholar 

  • Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    CAS  PubMed  Google Scholar 

  • Asiedu ERIC (2013) Pesticide contamination of fruits and vegetables—a market-basket survey from selected regions in Ghana. Doctoral Dissertation, University of Ghana

  • Azzouz A, Kailasa SK, Lee SS, Rascón AJ, Ballesteros E, Zhang M, Kim KH (2018) Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends Anal Chem 108:347–369

    Article  CAS  Google Scholar 

  • Bakirhan NK, Uslu B, Ozkan SA (2018) The detection of pesticide in foods using electrochemical sensors. In: Food safety and preservation, Chapt. 5. pp 91–141

  • Bala R, Mittal S, Sharma RK, Wangoo N (2018) A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. Spectrochim Acta Part A Mol Biomol Spectrosc 196:268–273

    Article  CAS  Google Scholar 

  • Balsebre A, Báez ME, Martinez J, Fuentes E (2018) Matrix solid-phase dispersion associated to gas chromatography for the assessment in honey bee of a group of pesticides of concern in the apicultural field. J Chromatogr A 1567:47–54

    Article  CAS  PubMed  Google Scholar 

  • Bargańska Ż, Konieczka P, Namieśnik J (2018) Comparison of two methods for the determination of selected pesticides in honey and honeybee samples. Molecules 23(10):2582

    Article  CAS  PubMed Central  Google Scholar 

  • Barker SA (2007) Matrix solid phase dispersion (MSPD). J Biochem Biophys Methods 70(2):151–162

    Article  CAS  PubMed  Google Scholar 

  • Buchel KH (1983) Chemistry of pesticides. Wiley, New York

    Google Scholar 

  • Busa L, Mohammadi S, Maeki M, Ishida A, Tani H, Tokeshi M (2016) Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines 7(5):86

    Article  PubMed Central  Google Scholar 

  • Calatayud-Vernich P, VanEngelsdorp D, Picó Y (2019) Beeswax cleaning by solvent extraction of pesticides. MethodsX 6:980–985

    Article  PubMed  PubMed Central  Google Scholar 

  • Capoferri D, Della Pelle F, Del Carlo M, Compagnone D (2018) Affinity sensing strategies for the detection of pesticides in food. Foods 7(9):148

    Article  PubMed Central  Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6(2):48–60

    Article  Google Scholar 

  • Chang PL, Hsieh MM, Chiu TC (2016) Recent advances in the determination of pesticides in environmental samples by capillary electrophoresis. Int J Environ Res Public Health 13(4):409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang MM, Ginjom IR, Ng SM (2017) Single-shot ‘turn-off’optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots. Sens Actuators B Chem 242:1050–1056

    Article  CAS  Google Scholar 

  • Chawla P, Kaushik R, Swaraj VS, Kumar N (2018) Organophosphorus pesticides residues in food and their colorimetric detection. Environ Nanotech Monit Manag 10:292–307

    Google Scholar 

  • Chen J, Huang M, Kong L, Lin M (2019) Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydr Polym 205:596–600

    Article  CAS  PubMed  Google Scholar 

  • Christodoulou DL, Kourouzidou O, Hadjigeorgiou M, Hadjiloizou P, Constantinou M, Constantinou P, Kika K, Klavarioti M (2018) Multi-residue analysis of pesticide residues in fruits and vegetables using gas and liquid chromatography with mass spectrometric detection. Accredit Qual Assur 23(3):145–175

    Article  CAS  Google Scholar 

  • Chui MQ, Thang LY, See HH (2017) Integration of the free liquid membrane into electrokinetic supercharging–capillary electrophoresis for the determination of cationic herbicides in environmental water samples. J Chromatogr A 1481:145–151

    Article  CAS  PubMed  Google Scholar 

  • Dominguez RB, Alonso GA, Muñoz R, Hayat A, Marty JL (2015) Design of a novel magnetic particles based electrochemical biosensor for organophosphate insecticide detection in flow injection analysis. Sens Actuators B Chem 208:491–496

    Article  CAS  Google Scholar 

  • Drabova L, Alvarez-Rivera G, Suchanova M, Schusterova D, Pulkrabova J, Tomaniova M, Kocourek V, Chevallier O, Elliott C, Hajslova J (2019) Food fraud in oregano: Pesticide residues as adulteration markers. Food Chem 276:726–734

    Article  CAS  PubMed  Google Scholar 

  • Drum C (1980) Soil chemistry of pesticides. PPG Industries. Inc., Pittsburgh

    Google Scholar 

  • Eissa S, Zourob M (2017) Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Anal Chem 89(5):3138–3145

    Article  CAS  PubMed  Google Scholar 

  • Fahimi-Kashani N, Hormozi-Nezhad MR (2016) Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal Chem 88(16):8099–8106

    Article  CAS  PubMed  Google Scholar 

  • Farajzadeh MA, Safi R, Yadeghari A (2019) Combination of QuEChERS extraction with magnetic solid phase extraction followed by dispersive liquid–liquid microextraction as an efficient procedure for the extraction of pesticides from vegetable, fruit, and nectar samples having high content of solids. Microchem J 147:571–581

    Article  CAS  Google Scholar 

  • Fu Y, Yang T, Zhao J, Zhang L, Chen R, Wu Y (2017) Determination of eight pesticides in Lycium barbarum by LC–MS/MS and dietary risk assessment. Food Chem 218:192–198

    Article  CAS  PubMed  Google Scholar 

  • Gondo TT, Obuseng VC, Mmualefe LC, Okatch H (2016) Employing solid phase microextraction as extraction tool for pesticide residues in traditional medicinal plants. J Anal Methods Chem 2016(6):1–11

    Article  CAS  Google Scholar 

  • Guo X, Wang K, Chen GH, Shi J, Wu X, Di LL, Wang Y (2017) Determination of strobilurin fungicide residues in fruits and vegetables by nonaqueous micellar electrokinetic capillary chromatography with indirect laser-induced fluorescence. Electrophoresis 38(16):2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Han XX, Ji W, Zhao B, Ozaki Y (2017) Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale 9(15):4847–4861

    Article  CAS  PubMed  Google Scholar 

  • Hancu G, Simon B, Rusu A, Mircia E, Gyéresi Á (2013) Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis. Adv Pharm Bull 3(1):1

    PubMed  PubMed Central  Google Scholar 

  • Hennion MC (1999) Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography. J Chromatogr A 856(1–2):3–54

    Article  CAS  PubMed  Google Scholar 

  • Hrouzková S, Brišová M, Szarka A (2017) Development of fast, efficient and ecological method employing vortex-assisted dispersive liquid–liquid microextraction combined with fast gas chromatography–mass spectrometry for pesticide residues analysis in alcohol-content samples. J Chromatogr A 1506:18–26

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Xu J, Ye Y, Han Y, Li X, Wang Z, Sun D, Zhou Y, Ni Z (2019) Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. Biosens Bioelectron 136:112–117

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim Y, Park SJ, Kwon C, Noh H (2018) Development of colorimetric paper sensor for pesticide detection using competitive-inhibiting reaction. BioChip J 12(4):326–331

    Article  CAS  Google Scholar 

  • Kurtagić H, Memić M, Barudanović S (2016) Determination of type of honey produced in the different climatic regions of Bosnia and Herzegovina. Int J Environ Sci Technol 13(11):2721–2730

    Article  CAS  Google Scholar 

  • Li J, Li Y, Xu D, Zhang J, Wang Y, Luo C (2017a) Determination of metrafenone in vegetables by matrix solid-phase dispersion and HPLC–UV method. Food Chem 214:77–81

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lu J, Qiao X, Xu Z (2017b) A study on biomimetic immunoassay-capillary electrophoresis method based on molecularly imprinted polymer for determination of trace trichlorfon residue in vegetables. Food Chem 221:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Li S, Luo Q, Liu Y, Zhang Z, Shen G, Wu H, Chen A, Liu X (2017c) Surface molecularly imprinted polymer film with poly (p-aminothiophenol) outer layer coated on gold nanoparticles inner layer for highly sensitive and selective sensing paraoxon. Polymers 9(8):359

    Article  CAS  PubMed Central  Google Scholar 

  • Li D, Qiao X, Lu J, Xu Z (2018a) Synthesis and evaluation of a magnetic molecularly imprinted polymer sorbent for determination of trace trichlorfon residue in vegetables by capillary electrophoresis. Adv Polym Tech 37(4):968–976

    Article  CAS  Google Scholar 

  • Li Y, Liu J, Zhang Y, Gu M, Wang D, Dang YY, Ye BC, Li Y (2018b) A robust electrochemical sensing platform using carbon paste electrode modified with molecularly imprinted microsphere and its application on methyl parathion detection. Biosens Bioelectron 106:71–77

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol 6(3):710–718

    Article  CAS  Google Scholar 

  • Liu B, Feng J, Sun X, Sheng W, Zhang Y, Wang S (2018a) Development of an enzyme-linked immunosorbent assay for the detection of difenoconazole residues in fruits and vegetables. Food Anal Methods 11(1):119–127

    Article  Google Scholar 

  • Liu G, Li L, Huang X, Zheng S, Xu D, Xu X, Zhang Y, Lin H (2018b) Determination of triazole pesticides in aqueous solution based on magnetic graphene oxide functionalized MOF-199 as solid phase extraction sorbents. Microporous Mesoporous Mater 270:258–264

    Article  CAS  Google Scholar 

  • Liu M, Khan A, Wang Z, Liu Y, Yang G, Deng Y, He N (2019) Aptasensors for pesticide detection. Biosens Bioelectron 130:174–184

    Article  CAS  PubMed  Google Scholar 

  • Lorenz ES (2009) Potential health effects of pesticides, Pesticide Safety Fact Sheet. Agric Commun Mark 1–8

  • Manav ÖG, Dinç-Zor Ş, Alpdoğan G (2019) Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchem J 144:124–129

    Article  CAS  Google Scholar 

  • Momenpour A, Lima PD, Chen YA, Tzeng CR, Tsang BK, Anis H (2018) Surface-enhanced Raman scattering for the detection of polycystic ovary syndrome. Biomed Opt Express 9(2):801–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montemurro M, Pinto L, Véras G, de Araújo Gomes A, Culzoni MJ, de Araújo MC, Goicoechea HC (2016) Highly sensitive quantitation of pesticides in fruit juice samples by modeling four-way data gathered with high-performance liquid chromatography with fluorescence excitation-emission detection. Talanta 154:208–218

    Article  CAS  PubMed  Google Scholar 

  • Narenderan ST, Meyyanathan SN (2018) Sample treatment and determination of pesticide residues in potato matrices: a review. Potato Res 62(1):47–67

    Article  CAS  Google Scholar 

  • Nasiri A, Amirahmadi M, Mousavi Z, Shoeibi S, Khajeamiri A, Kobarfard F (2016) A multi residue GC–MS method for determination of 12 pesticides in cucumber. Iran J Pharm Res IJPR 15(4):809

    CAS  PubMed  Google Scholar 

  • Neufeld DS, Åkerson N, Barahona D (2015) Pesticide analysis in vegetables using QuEChERS extraction and colorimetric detection. Va J Sci 66(4):4

    Google Scholar 

  • Nie Y, Teng Y, Li P, Liu W, Shi Q, Zhang Y (2018) Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced raman scattering. Spectrochim Acta, Part A 191:271–276

    Article  CAS  Google Scholar 

  • Nouanthavong S, Nacapricha D, Henry CS, Sameenoi Y (2016) Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 141(5):1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Okoffo ED, Fosu-Mensah BY, Gordon C (2017) Contamination levels of organophosphorus and synthetic pyrethroid pesticides in cocoa beans from Ghana. Food Control 73:1371–1378

    Article  CAS  Google Scholar 

  • Palanivelu J, Chidambaram R (2019) Acetylcholinesterase with mesoporous silica: covalent immobilization, physiochemical characterization, and its application in food for pesticide detection. J Cell Biochem 120(6):10777–10786

    Article  CAS  PubMed  Google Scholar 

  • Patel H, Rawtani D, Agrawal YK (2019) A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase—a review. Trends Food Sci Technol 85:78–91

    Article  CAS  Google Scholar 

  • Purdešová A, Dömötorová M (2017) MSPD as sample preparation method for determination of selected pesticide residues in apples. Acta Chim Slov 10(1):41–46

    Article  CAS  Google Scholar 

  • Qian S, Lin H (2015) Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal Chem 87(10):5395–5400

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Lv P, Zhao C, Feng X, Fang G, Liu J, Wang S (2019) Electrochemical detection of organophosphorus pesticides based on amino acids conjugated nanoenzyme modified electrodes. Sens Actuators B Chem 286:386–393

    Article  CAS  Google Scholar 

  • Rapini R, Cincinelli A, Marrazza G (2016) Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 161:15–21

    Article  CAS  PubMed  Google Scholar 

  • Reddy CS, Reddy GV (2017) Pesticide residues recovery studies by QuEChERS sample technique using gas chromatography. Madras Agric J 104(1–3):64–67

    Google Scholar 

  • Regulation (EC) No. 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Off J Eur Union L70, 16.3.2005, p. 1. 2005

  • Sacramento CA (2008) Department of pesticide regulation “what are the potential health effects of pesticides?” community guide to recognizing and reporting pesticide problems 27–29

  • Salemi A, Khaleghifar N, Mirikaram N (2019) Optimization and comparison of membrane-protected micro-solid-phase extraction coupled with dispersive liquid–liquid microextraction for organochlorine pesticides using three different sorbents. Microchem J 144:215–220

    Article  CAS  Google Scholar 

  • Saraji M, Jafari MT, Mossaddegh M (2016) Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. J Chromatogr A 1429:30–39

    Article  CAS  PubMed  Google Scholar 

  • Shamsipur M, Yazdanfar N, Ghambarian M (2016) Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chem 204:289–297

    Article  CAS  PubMed  Google Scholar 

  • Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304

    Article  CAS  PubMed  Google Scholar 

  • Stachniuk A, Fornal E (2016) Liquid chromatography–mass spectrometry in the analysis of pesticide residues in food. Food Anal Methods 9(6):1654–1665

    Article  Google Scholar 

  • Tan MJ, Hong ZY, Chang MH, Liu CC, Cheng HF, Loh XJ, Chen CH, Liao CD, Kong KV (2017) Metal carbonyl-gold nanoparticle conjugates for highly sensitive SERS detection of organophosphorus pesticides. Biosens Bioelectron 96:167–172

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Yang J, Wang F, Wang J, Li Z (2019) Thiocholine-triggered reaction in personal glucose meters for portable quantitative detection of organophosphorus pesticide. Anal Chim Acta 1060:97–102

    Article  CAS  PubMed  Google Scholar 

  • Timofeeva I, Shishov A, Kanashina D, Dzema D, Bulatov A (2017) On-line in-syringe sugaring-out liquid–liquid extraction coupled with HPLC–MS/MS for the determination of pesticides in fruit and berry juices. Talanta 167:761–767

    Article  CAS  PubMed  Google Scholar 

  • Vasylieva N, Ahn KC, Barnych B, Gee SJ, Hammock BD (2015) Development of an immunoassay for the detection of the phenylpyrazole insecticide fipronil. Environ Sci Technol 49(16):10038–10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175(6):3093–3119

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chow W, Chang J, Wong JW (2017) Development and validation of a qualitative method for target screening of 448 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap based on data-independent acquisition and compound database. J Agric Food Chem 65(2):473–493

    Article  CAS  PubMed  Google Scholar 

  • Wang FR, Lee GJ, Haridharan N, Wu JJ (2018) Electrochemical sensor using molecular imprinting polymerization modified electrodes to detect methyl parathion in environmental media. Electrocatalysis 9(1):1–9

    Article  CAS  Google Scholar 

  • Wu X, Li W, Guo P, Zhang Z, Xu H (2018) Rapid trace detection and isomer quantitation of pesticide residues via matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry. J Agric Food Chem 66(15):3966–3974

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Zhang M, Chen P, Zhao H, Yang X, Yao L, Zhang H, Dong A, Wang J, Wang Z (2017) A facile molecularly imprinted electrochemical sensor based on graphene: application to the selective determination of thiamethoxam in grain. RSC Adv 7(62):38884–38894

    Article  CAS  Google Scholar 

  • Xu G, Huo D, Hou C, Zhao Y, Bao J, Yang M, Fa H (2018) A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–1052

    Article  CAS  PubMed  Google Scholar 

  • Yadav IC, Devi NL (2017) Pesticides Classification and Its Impact on Human and Environment. Environ Sci Eng 6:140–158

    Google Scholar 

  • Yan X, Li H, Yan Y, Su X (2015) Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chem 173:179–184

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Song Y, Zhu C, Li H, Du D, Su X, Lin Y (2018) MnO2 nanosheet-carbon dots sensing platform for sensitive detection of organophosphorus pesticides. Anal Chem 90(4):2618–2624

    Article  CAS  PubMed  Google Scholar 

  • Yande L, Yuxiang Z, Haiyang W, Bing Y (2016) Detection of pesticides on navel orange skin by surface-enhanced Raman spectroscopy coupled with Ag nanostructures. Int J Agric Biol Eng 9(2):179–185

    Google Scholar 

  • Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, Gao H (2015) Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A 1381:37–47

    Article  CAS  PubMed  Google Scholar 

  • Yanty NA, Marikkar JM, Long K (2011) Effect of varietal differences on composition and thermal characteristics of avocado oil. J Am Oil Chem Soc 12:1997–2003

    Article  CAS  Google Scholar 

  • Yu G, Wu W, Zhao Q, Wei X, Lu Q (2015) Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens Bioelectron 68:288–294

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Liu Q, Liu J, Wang Q, Wang Y (2016) Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control 60:353–360

    Article  CAS  Google Scholar 

  • Zhang P, Ding J, Hou J, Zhao L, Chen Y, Ding L (2017a) Dynamic microwave assisted extraction coupled with matrix solid phase dispersion for the determination of chlorfenapyr and abamectin in rice by LC–MS/MS. Microchem J 133:404–411

    Article  CAS  Google Scholar 

  • Zhang S, Liu X, Qin JA, Yang M, Zhao H, Wang Y, Guo W, Ma Z, Kong W (2017b) Rapid gas chromatography with flame photometric detection of multiple organophosphorus pesticides in Salvia miltiorrhizae after ultrasonication assisted one-step extraction. J Chromatogr B 1068:233–238

    Article  CAS  Google Scholar 

  • Zhang W, Li R, Xu W (2017c) Research status and prospect of rapid detection technology of pesticide residues based on surface-enhanced Raman scattering. Trans Chin Soc Agric Eng 33(24):269–276

    CAS  Google Scholar 

  • Zhang Z, Dong M, Hao X, Han L, Song S, Yao W (2019) Evaluation of cleanup procedures in pesticide multi-residue analysis with QuEChERS in cinnamon bark. Food Chem 276:140–146

    Article  CAS  PubMed  Google Scholar 

  • Zhong Q, Shen L, Liu J, Yu D, Li S, Yao J, Zhan S, Huang T, Hashi Y, Kawano SI, Liu Z (2016) Pre-column dilution large volume injection ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of multi-class pesticides in cabbages. J Chromatogr A 1442:53–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the research grant of Universiti Malaysia Sabah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobun Rovina.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, N.S., Rovina, K. & Joseph, V.M. Classification, extraction and current analytical approaches for detection of pesticides in various food products. J Consum Prot Food Saf 14, 209–221 (2019). https://doi.org/10.1007/s00003-019-01242-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00003-019-01242-4

Keywords

Navigation