Skip to main content

Disappearance and hazard quotient of chlorpyrifos-methyl, fipronil, and imidacloprid insecticides from dates


Control strategies of red palm weevil (RPW) mainly depend on the use of insecticides. However, the residue of insecticides in dates might cause poisoning risk to the consumers. Therefore, the present study aimed to measure the disappearance rates of the extensively applied insecticides on date palm trees. Residues of chlorpyrifos-methyl (CPM), fipronil (FIP), and imidacloprid (IMD) insecticides in and/or on dates were extracted and cleaned-up using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. The residues of CPM, FIP, and IMD were determined by GC-FPD, GC-ECD, and HPLC, respectively. Recoveries of CPM, FIP, and IMD ranged from 86.3 to 98.2%. CPM on dates degraded faster than FIP and IMD. However, after 21 days of the last spray application, 74, 50, and 67% of CPM, FIP, and IMD disappeared, respectively. Residues of CPM and IMD insecticides posed no risk quotient, but FIP caused a risk to humans, depending on the consumption pattern of dates. Insecticides with a fast degradation pattern should be incorporated into the management strategy of RPW to reduce the amount on residues in dates.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Abbassy MA, Nassar AMK, Salim YMM, Marzouk MA (2015) Toxic effects of residue amounts of chlorpyrifos-methyl in tomato to white albino rats. Res J Environ Toxicol 9:241–250

    Article  Google Scholar 

  2. Abd Rabou E, Hussain S, Elsharabasy F, Abouamer WL (2015) Estimation of insecticide residue in date palm fruits after controlling the red palm weevil. Int J Food Nutr Sci 4(5):27–31

    Google Scholar 

  3. Ahmed A, Ahmed AW, Robinson RK (1995) Chemical composition of date varieties as influenced by the stage of ripening. Food Chem 54:305–309

    CAS  Article  Google Scholar 

  4. Al-Samarrie AI, Abo-Akela A (2011) Distribution of injected pesticides in date palm trees. Agric Biol J N Am 2:1416–1426

    CAS  Article  Google Scholar 

  5. Al-Shawaf A, AL-Shaqaq A, AL-Bagshi M, AL-Saroj S, AL-Bather S, AL-Dandan A, Ben Abdullah A (2011) Developing Quarantine Protocols against the Red Palm Weevil, Rhynchophorus ferrugineus (Olivier), (Coleptera: Curculiondae). In: Entomology, ESA 59th annual meeting, November 13–16, Reno, NV

  6. Al-Shawaf A, Al-Shagag A, Al-Bagshi M, Al-Saroj S, Al-Bather S, Al-Dandan AM, Ben Abdallah A, Faleiro JR (2013) A Quarantine protocol against red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleptera: Curculiondae) in date palm. J Plant Prot Res 53:409–415

    Article  Google Scholar 

  7. Barranco P, Pena J, Martin MM, Cabello T, Peno J (1998) Efficiency of chemical control of the new palm pest Rhynchophorus ferrugineus (Olivier) (Col.: Curculionidae). Boletin de Sanidad Vegetal Plagas 24:301–306

    Google Scholar 

  8. Codex Alimentarius Commission (2016) Pesticide residues in food and feed. Accessed June 2016

  9. EU Pesticides Database (2016) Pesticide residues and maximum residue levels (mg/kg). (Accessed on May 2016)

  10. El-Juhany LI (2010) Degradation of date palm trees and date production in Arab countries: causes and potential rehabilitation. Aust J Basic Appl Sci 4:3998–4010

    Google Scholar 

  11. El-Saeid MH, AL-Dosari SA (2010) Monitoring of pesticide residues in Riyadh dates by SFE, MSE, SFC, and GC techniques. Arab J Chem 3:179–186

    CAS  Article  Google Scholar 

  12. FAOSTAT (Food and Agriculture Organization) (2017) (Accessed April 2017)

  13. Giblin-Davis RM, Faleiro JR, Jacas JA, Peña JE, Vidyasagar PSPV (2013) Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In: Peña J (ed) Potential invasive pests of agricultural crops. CAB International, Wallingford (chapter 1)

    Google Scholar 

  14. Jaradat AA, Zaid A (2004) Quality traits of date palm fruits in a center of origin and center of diversity. Food Agric Environ 2:208–217

    Google Scholar 

  15. Kaakeh W (2006) Toxicity of imidacloprid to developmental stages of Rhynchophorus ferrugineus (Curculionidae: Coleoptera): Laboratory and field tests. Crop Prot 25:432–439

    CAS  Article  Google Scholar 

  16. Kamel A, Al-Dosary S, Ibrahim S, Ahmed MA (2007) Degradation of the acaricides abamectin, flufenoxuron and amitraz on Saudi Arabian dates. Food Chem 100:1590–1593

    CAS  Article  Google Scholar 

  17. Khan AJ, Azam KM, Razvi SA (2001) Pesticide residues analysis of date palm fruits by gas chromatography mass spectrophotometry. In: Proc Second International Conference on Date Palms, Al-Ain, UAE, March 25–27, 211–215

  18. Krishnakumar R, Maheswari P (2007) Assessment of the sterile insect technique to manage red palm weevil Rhynchophorus ferrugineus in coconut. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests, Springer, Dordrecht

  19. Kurz MHS, Martel S, Gonçalves FF, Prestes OD, Martins ML, Zanella R, Adaime MB (2013) Development of a fast method for the determination of the insecticide fipronil and its metabolites in environmental waters by SPE and GC-ECD. J Braz Chem Soc 24:631–638

    CAS  Google Scholar 

  20. Landgren CG (1987) Calibrating and using a backpack sprayer. Pacific Northwest Extension, Pullman, WA 99164-6230

  21. Llácer E, de Altube MMM, Jacas JA (2009) Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. BioControl 54(4):559–565. doi:10.1007/s10526-008-9208-3

    Article  Google Scholar 

  22. MALR (Ministry of Agriculture and Land Reclamation) (2016) Catalog of recommended pesticides to control pathogenic-pests. Ministry of Agriculture and Land Reclamation Press, Cairo

    Google Scholar 

  23. Murphy ST, Briscoe BR (1999) The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News Inf 20(1):35N–46N

    Google Scholar 

  24. Nassar AMK, Abbassy MA, Salem YM (2015) Mammalian detrimental effects of imidacloprid residues in tomato fruits. Res J Environ Toxicol 9:149–159

    CAS  Article  Google Scholar 

  25. Oehlschlager AC (2007) Optimizing trapping of palm weevils and beetles. Acta Hortic 736:347–368

    Article  Google Scholar 

  26. Paya P, Anastassiades M, Dorothea M, Sigalova I, Tasdelen B, José O (2007) Analysis of pesticide residues using the quick easy cheap effective rugged and safe (QuEChERS) pesticide multi residue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal Bioanal Chem 389:1697–1714

    CAS  Article  PubMed  Google Scholar 

  27. Pihlström T (2011) Method validation and quality control procedures for pesticide residues analysis in food and feed. Document N° SANCO/12495/2011.

  28. Rifai AF, Ahmed SS, Obeid K (2000) Regent efficiency and residues in fruits when used flooded leg Palm (Trunk Drench) for the red weevil control. The first workshop to control the red palm weevil. Published Research Center Date Palm, King Faisal University, Al-Hassa, Saudi Arabia pp. 79–86

  29. Salama HS, Foda MS, El-Bendary MA, Abdel-Razek A (2004) Infection of red palm weevil, Rhynchophorus ferrugineus, by spore-forming bacilli indigenous to its natural habitat in Egypt. J Pest Sci 77(1):27–32. doi:10.1007/s10340-003-0023-4

    Article  Google Scholar 

  30. SAS (Statistical Analysis System) (2013) (Version 9.2), SAS Institute Inc., Cary, NC 27513-2414 USA

  31. Sewify GH, Belal MH, Al-Awash SA (2009) Use of the entomopathogenic fungus, Beauveria bassiana for the biological control of the red palm weevil, Rhynchophorus ferrugineus Olivier. Egypt J Biol Pest Control 19(2):157–163

    Google Scholar 

  32. Shar MU, Rustamani MA, Nizamani SM, Bhutto LA (2012) Red palm weevil (Rhynchophorus ferrugineus Olivier) infestation and its chemical control in Sindh province of Pakistan. Afr J Agric Res 7:1666–1673

    Google Scholar 

  33. Su NY, Ban PM, Chew V, Scheffrahn RH (1999) Size and edge effects of concrete plots on chlorpyrifos degradation in sub-slab sand. J Econ Entomol 92:409–415

    CAS  Article  Google Scholar 

  34. Tchounwou PB, Ashour B, Moreland-Young C, Ragheb DA, Romeh AA, Goma E, El-Sheikh S, Lidell FP, Ibitayo O, Assad J-C (2002) Health risk assessment of pesticide usage in Menia El-Kamh Province of Sharkia Governorate in Egypt. Int J Mol Sci 3:1082–1094

    Article  Google Scholar 

  35. Vayalil PK (2012) Date fruits (Phoenix dactylifera Linn): an emerging medicinal food. Crit Rev Food Sci Nutr 52:249–271

    CAS  Article  PubMed  Google Scholar 

  36. Zada A, Soroker V, Harel M, Nakache J, Dunkelblum E (2002) Quantitative GC analysis of secondary alcohol pheromones: determination of release rate of red palm weevil, Rhynchophorus ferrugineus, pheromone from lures. J Chem Ecol 28(11):2299–2306. doi:10.1023/A:1021057501459

    CAS  Article  PubMed  Google Scholar 

  37. Zhang Z, Li H, Wu M, Yuan Y, Hu X, Zheng W (2009) Residue and risk assessment of chlorothalonil, myclobutanil and pyraclostrobin in greenhouse strawberry. Chin J Pestic Sci 11:449–455

    CAS  Google Scholar 

Download references


The authors would like to thank the Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt for renting the HPLC and GC–MS equipment for the analysis of insecticide residues.

Author information



Corresponding author

Correspondence to Moustafa A. Abbassy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbassy, M.A., Salim, Y.M.M., Shawir, M.S. et al. Disappearance and hazard quotient of chlorpyrifos-methyl, fipronil, and imidacloprid insecticides from dates. J Consum Prot Food Saf 12, 223–230 (2017).

Download citation


  • GC
  • HPLC
  • Phoenix dactylifera L.
  • Red palm weevil
  • Insecticide residue analysis
  • Risk assessment