Wirkungsbezogene Analytik – Konzepte für die Fort- und Weiterentwicklung

Announcements and Reports
  • 133 Downloads

Zusammenfassung

Die Wirkungsbezogene Analytik stellt ein Konzept dar, welches nicht auf der analytisch-chemischen Detektion einzelner Substanzen, sondern auf dem Nachweis der Wirkungen dieser Substanzen auf biologische Systeme basiert. Somit ermöglicht die Wirkungsbezogene Analytik auch die Detektion unbekannter Schadsubstanzen. Detailliertes Wissen über die molekularen Grundlagen toxischer Wirkungen ist dabei notwendig, um geeignete wirkungsbasierte biologische Testsysteme zu entwickeln. Der bekannteste Vertreter solch eines Testsystems ist der CALUX-Test zur Bestimmung Dioxin-ähnlicher Wirkungen auf den Aryl-Hydrocarbon-Rezeptor mittels eines Luciferase-Reportersystems. Derartige Testsysteme erlauben die zuverlässige Detektion einzelner toxischer Wirkmechanismen. Im diesem Beitrag sollen mögliche methodische Weiterentwicklungen der Wirkungsbezogenen Analytik skizziert werden, mit deren Hilfe in Zukunft die parallele Detektion unterschiedlicher molekularer Mechanismen der Toxizität möglich sein könnte. Zudem wird ein Zukunftsbild der Wirkungsbezogenen Analytik in der Lebensmittelsicherheit skizziert.

Schlüsselwörter

Wirkungsbezogene Analytik Lebensmittelsicherheit CALUX-Assay Lebensmittelüberwachung 

Abstract

The concept of effect-based analytics is based on the detection of substance-induced effects in biological test systems, not on the identification of individual compounds by classic analytic chemistry. Effect-based analytics thus also allows for the detection of unknown harmful substances. Detailed knowledge about the molecular basis of toxic effects is necessary for the development of appropriate effect-based biological tests. The best-known example for such a test system is the CALUX assay for the detection of dioxin-like effects at the aryl hydrocarbon receptor by the use of a luciferase reporter system. Such test systems allow for the reliable detection of individual modes of action in toxicology. In this paper, possible further developments in effect-based analytics will be discussed, by which parallel detection of different molecular mechanisms of toxicity might be possible in the future. Furthermore, a vision of future effect-based analytics in the area of food safety is drafted.

Keywords

Effect-based analytics Food safety CALUX assay Food control 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Literatur

  1. Bock KW (2013) The human Ah receptor: hints from dioxin toxicities to deregulated target genes and physiological functions. Biol Chem 394(6):729–739CrossRefPubMedGoogle Scholar
  2. Brack W, Ait-Aissa S, Burgess RM et al (2016) Effect-directed analysis supporting monitoring of aquatic environments—an in-depth overview. Sci Total Environ 544:1073–1118CrossRefPubMedGoogle Scholar
  3. Braeuning A (2015) Firefly luciferase inhibition: a widely neglected problem. Arch Toxicol 89(1):141–142CrossRefPubMedGoogle Scholar
  4. Braeuning A, Broll H, Lampen A (2016) Wirkungsbezogene Analytik: Neue Konzepte für die Überwachung und Lebensmittelsicherheit. J Verbr Lebensm 11:91–96CrossRefGoogle Scholar
  5. Corton C (2015) Identification of potential endocrine disrupting chemicals using gene expression biomarkers. Toxicol Lett 238S:S36CrossRefGoogle Scholar
  6. Di Paolo C, Seiler TB, Keiter S et al (2015) The value of zebrafish as an integrative model in effect-directed analysis—a review. Environ Sci Europe 27:8CrossRefGoogle Scholar
  7. Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24(5):333–342CrossRefPubMedGoogle Scholar
  8. Lappalainen JO, Karp MT, Nurmi J, Juvonen R, Virta MPJ (2000) Comparison of the total mercury content in sediment samples with a mercury sensor bacteria test and Vibrio Fischeri toxicity test. Environ Toxicol 15:443–448CrossRefGoogle Scholar
  9. Luckert C, Hessel S, Lampen A, Braeuning A (2015) Utility of an appropriate reporter assay: Heliotrine interferes with GAL4/upstream activation sequence-driven reporter gene systems. Anal Biochem 487:45–48CrossRefPubMedGoogle Scholar
  10. Marx-Stoelting P, Braeuning A, Buhrke T et al (2015) Application of omics data in regulatory toxicology: report of an international BfR expert workshop. Arch Toxicol 89(11):2177–2184CrossRefPubMedGoogle Scholar
  11. Matthews J, Celius T, Halgren R, Zacharewski T (2000) Differential estrogen receptor binding of estrogenic substances: a species comparison. J Steroid Biochem Mol Biol 74(4):223–234CrossRefPubMedGoogle Scholar
  12. Oshida K, Vasani N, Thomas RS et al (2015) Identification of modulators of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in a mouse liver gene expression compendium. PLoS One 10(2):e0112655CrossRefPubMedPubMedCentralGoogle Scholar
  13. Rempel E, Hoelting L, Waldmann T et al (2015) A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 89(9):1599–1618CrossRefPubMedPubMedCentralGoogle Scholar
  14. Shinde V, Hoelting L, Srinivasan SP et al (2017) Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol 91(2):839–864. doi: 10.1007/s00204-016-1741-8 CrossRefPubMedGoogle Scholar
  15. Uibel F, Schwarz M (2015) Prediction of embryotoxic potential using the ReProGlo stem cell-based Wnt reporter assay. Reprod Toxicol 55:30–49CrossRefPubMedGoogle Scholar
  16. Uibel F, Muhleisen A, Kohle C et al (2010) ReProGlo: a new stem cell-based reporter assay aimed to predict embryotoxic potential of drugs and chemicals. Reprod Toxicol 30(1):103–112CrossRefPubMedGoogle Scholar
  17. Van den Hof WF, Coonen ML, van Herwijnen M et al (2014) Classification of hepatotoxicants using HepG2 cells: A proof of principle study. Chem Res Toxicol 27(3):433–442CrossRefPubMedGoogle Scholar
  18. Wernersson AS, Carere M, Maggi C et al (2015) The European technical report on aquatic effect-based monitoring tools under the water framework directive. Environ Sci Europe 27:7CrossRefGoogle Scholar
  19. Wilkinson CF, Christoph GR, Julien E et al (2000) Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: how to cumulate? Regul Toxicol Pharmacol 31(1):30–43CrossRefPubMedGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2017

Authors and Affiliations

  1. 1.Abteilung LebensmittelsicherheitBundesinstitut für RisikobewertungBerlinGermany

Personalised recommendations