Advertisement

SNP genotyping in sheep from northwest and east China for meat traceability

  • Qiayu Wu
  • Guanghong Zhou
  • Sasa Yang
  • Ba Tur Abulikemu
  • Ruiming Luo
  • Yanli Zhang
  • Xiao Li
  • Xinglian Xu
  • Chunbao Li
Research article

Abstract

Meat traceability is essential for meat safety and to solve adulteration issues. Single nucleotide polymorphisms (SNPs) are commonly used as a DNA marker and provide a way to trace meat and meat products. The high resolution melting method is a relatively cheap and fast method for detecting specific SNPs. In the present study, we selected 8 SNPs from the NCBI dbSNP database and tested their feasibility in blood or meat samples from 135 sheep reared in northwestern and eastern China. The results indicated that seven SNPs were suitable for meat traceability and the probability of 2 individuals having the same genotype was 1.85 out of 1000.

Keywords

DNA traceability SNPs HRM Sheep 

Notes

Acknowledgements

This study was funded by the Grants 2012BAD28B02-03 and 2014BAD19B01 from the Ministry of Science and Technology, PR China.

Compliance with ethical standards

Funding

This study was funded by the Ministry of Science and Technology, PR China (Grant Number 2012BAD28B02-03 and 2014BAD19B01).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

3_2017_1092_MOESM1_ESM.doc (5.6 mb)
Supplementary material 1 (DOC 5768 kb)

References

  1. Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney L, Reuber TL, Stammers M, Federspiel N (1999) Genome-wide mapping with biallelic markers in arabidopsis thaliana. Nat Genet 23:203–207. doi: 10.1038/13833 CrossRefPubMedGoogle Scholar
  2. Goffaux F, China B, Dams L, Clinquart A, Daube G (2005) Development of a genetic traceability test in pig based on single nucleotide polymorphism detection. Forensic Sci Int 151:239–247. doi: 10.1016/j.forsciint.2005.02.013 CrossRefPubMedGoogle Scholar
  3. Graham R, Liew M, Meadows C, Lyon E, Wittwer CT (2005) Distinguishing different DNA heterozygotes by high-resolution melting. Clin Chem 51:1295–1298. doi: 10.1373/clinchem.2005.051516 CrossRefPubMedGoogle Scholar
  4. Karniol B, Shirak A, Baruch E, Singrün C, Tal A, Cahana A, Kam M, Skalski Y, Brem G, Weller J (2009) Development of a 25-plex SNP assay for traceability in cattle. Anim Genet 40:353–356. doi: 10.1111/j.1365-2052.2008.01846.x CrossRefPubMedGoogle Scholar
  5. Kidd KK, Pakstis AJ, Speed WC, Grigorenko EL, Kajuna SL, Karoma NJ, Kungulilo S, Kim J, Lu R, Odunsi A (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci Int 164:20–32. doi: 10.1016/j.forsciint.2005.11.017 CrossRefPubMedGoogle Scholar
  6. Lee HY, Park MJ, Yoo JE, Chung U, Han GR, Shin KJ (2005) Selection of twenty-four highly informative SNP markers for human identification and paternity analysis in Koreans. Forensic Sci Int 148:107–112. doi: 10.1016/j.forsciint.2004.04.073 CrossRefPubMedGoogle Scholar
  7. Li J, Milbury CA, Li C, Makrigiorgos GM (2009) Two-Round Coamplification at lower denaturation temperature-PCR (COLD-PCR)-based sanger sequencing identifies a novel spectrum of low-level mutations in lung adenocarcinoma. Hum Mutat 30:1583–1590. doi: 10.1002/humu.21112 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164. doi: 10.1373/clinchem.2004.032136 CrossRefPubMedGoogle Scholar
  9. Liu S, Palti Y, Gao G, Rexroad CE (2016) Development and validation of a SNP panel for parentage assignment in rainbow trout. Aquaculture 452:178–182. doi: 10.1016/j.aquaculture.2015.11.001 CrossRefGoogle Scholar
  10. Orru L, Catillo G, Napolitano F, De Matteis G, Scata M, Signorelli F, Moioli B (2009) Characterization of a SNPs panel for meat traceability in six cattle breeds. Food Control 20:856–860. doi: 10.1016/j.foodcont.2008.10.015 CrossRefGoogle Scholar
  11. Rajatileka S, Luyt K, El-Bokle M, Williams M, Kemp H, Molnár E, Varadi A (2013) Isolation of human genomic dna for genetic analysis from premature neonates: a comparison between newborn dried blood spots, whole blood and umbilical cord tissue. BMC Genet 14:1–9. doi: 10.1186/1471-2156-14-105 CrossRefGoogle Scholar
  12. Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clinl Chem 50:1748–1754. doi: 10.1373/clinchem.2003.029751 CrossRefGoogle Scholar
  13. Regattieri A, Gamberi M, Manzini R (2007) Traceability of food products: general framework and experimental evidence. J Food Eng 81:347–356. doi: 10.1016/j.jfoodeng.2006.10.032 CrossRefGoogle Scholar
  14. Shiro S, Matsuura S, Saiki R, Sigua GC, Yamamoto A, Umehara Y, Hayashi M, Saeki Y (2013) Genetic diversity and geographical distribution of indigenous soybean-nodulating bradyrhizobia in the united states. Appl Environ Microb 79:3610–3618. doi: 10.1128/AEM.00236-13 CrossRefGoogle Scholar
  15. Touati A, Blouin Y, Sirand-Pugnet P, Renaudin H, Oishi T, Vergnaud G, Bebear C, Pereyre S (2015) Molecular epidemiology of mycoplasma pneumoniae: genotyping using single nucleotide polymorphisms and snapshot technology. J Clin Microbiol 53:3182–3194. doi: 10.1128/JCM.01156-15 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Weller J, Seroussi E, Ron M (2006) Estimation of the number of genetic markers required for individual animal identification accounting for genotyping errors. Anim Genet 37:387–389. doi: 10.1111/j.1365-2052.2006.01455.x CrossRefPubMedGoogle Scholar
  17. Werner F, Durstewitz G, Habermann F, Thaller G, Krämer W, Kollers S, Buitkamp J, Georges M, Brem G, Mosner J (2004) Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim Genet 35:44–49. doi: 10.1046/j.1365-2052.2003.01071.x CrossRefPubMedGoogle Scholar
  18. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of hardy-weinberg equilibrium. Am J Hum Genet 76:887–893. doi: 10.1086/429864 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yang S, Li C, Wu Q, Zhu C, Xu X, Zhou G (2014) High-resolution melting analysis: a promising molecular method for meat traceability. Eur Food Res Technol 239:473–480. doi: 10.1007/s00217-014-2241-9 CrossRefGoogle Scholar

Copyright information

© Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2017

Authors and Affiliations

  • Qiayu Wu
    • 1
    • 2
    • 3
    • 4
  • Guanghong Zhou
    • 1
    • 2
    • 3
    • 4
  • Sasa Yang
    • 1
    • 2
    • 3
    • 4
  • Ba Tur Abulikemu
    • 5
  • Ruiming Luo
    • 6
  • Yanli Zhang
    • 4
  • Xiao Li
    • 1
    • 2
    • 3
    • 4
  • Xinglian Xu
    • 1
    • 2
    • 3
    • 4
  • Chunbao Li
    • 1
    • 2
    • 3
    • 4
  1. 1.Key Laboratory of Meat Processing and Quality Control, MOENanjingPeople’s Republic of China
  2. 2.Key Laboratory of Animal Products Processing, MOANanjingPeople’s Republic of China
  3. 3.Jiangsu Synergetic Innovation Center of Meat Production and ProcessingNanjingPeople’s Republic of China
  4. 4.College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China
  5. 5.Xinjiang Agricultural UniversityXinjiangPeople’s Republic of China
  6. 6.Ningxia UniversityNingxiaPeople’s Republic of China

Personalised recommendations