Skip to main content
Log in

Potential and limitations of MALDI-TOF MS for discrimination within the species Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides

  • Methods
  • Published:
Journal für Verbraucherschutz und Lebensmittelsicherheit Aims and scope Submit manuscript

Abstract

The discriminatory power of MALDI-TOF MS (matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry) was evaluated for differentiation of bacterial strains within Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides species. Protein fingerprints were generated with MALDI-TOF MS for 24 Leuconostoc strains and analyzed with ClinProTools at species level and below. A treatment of bacterial cells prior to MALDI-TOF MS analysis was optimized applying different lysozyme concentrations. A pre-treatment with a lysozyme concentration of 12.5 μg ml−1 for 30 min exposure time enhanced the reproducibility of the spectra but did not influence the cluster analysis in ClinProTools. The cluster analysis resulted in the identification of seven different peak patterns shared among twelve strains of L. pseudomesenteroides and eight peak patterns shared among twelve strains of L. mesenteroides. The protein fingerprints of 24 Leuconostoc strains were sufficiently diverse for a reliable discrimination of half of the analyzed starter cultures at strain level. The other half of the strains could only be identified at cluster level. The discrimination at subspecies level was not possible on the basis of MALDI-TOF MS profiling. The MALDI-TOF MS methodology delivered interesting information about the diversity of bacterial isolates belonging to the two species L. mesenteroides and L. pseudomesenteroides but had its limitations for subspecies discrimination of unknown isolates as well as strain identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albesharat R, Ehrmann MA, Korakli M, Yazaji S, Vogel RF (2011) Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol 34(2):148–155

    Article  PubMed  CAS  Google Scholar 

  • Arnold RJ, Reilly JP (1999) Observation of Escherichia coli ribosomal proteins and their posttranslational modifications by mass spectrometry. Anal Biochem 269(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Bansal T, Garg S (2008) Probiotics, from functional foods to pharmaceutical products. Curr Pharm Biotechnol 9:267–287

    Article  PubMed  CAS  Google Scholar 

  • Bernardeau M, Vernoux JP, Henri-Dubernet S, Gueguen M (2008) Safety assessment of dairy microorganisms, the Lactobacillus genus. Int J Food Microbiol 126:278–285

    Article  PubMed  CAS  Google Scholar 

  • Collins JK, Thornton G, Sullivan GO (1998) Selection of probiotic strains for human applications. Int Dairy J 8:487–490

    Article  Google Scholar 

  • De Bruyne K, Schillinger U, Caroline L, Boehringer B, Cleenwerck I, Vancanneyt M, De Vuyst L, Franz CMAP, Vandamme P (2007) Leuconostoc holzapfelii sp. nov., isolated from Ethiopian coffee fermentation and assessment of sequence analysis of housekeeping genes for delineation of Leuconostoc species. Int J Syst Evol Microbiol 57:2952–2959

    Article  PubMed  Google Scholar 

  • De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P (2011) Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol 34:20–29

    Article  PubMed  Google Scholar 

  • de las Rivas B, Marcobal A, Munoz R (2004) Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol 70(12):7210–7219

    Article  Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for cultivation of Lactobacilli. J Appl Bacteriol 23:130–135

    Article  Google Scholar 

  • Dieckmann R, Malorny B (2011) Rapid screening of epidemiologically important salmonella enteric subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 77(12):4136–4146

    Article  PubMed  CAS  Google Scholar 

  • Elliot JA, Facklam RR (1993) Identification of Leuconostoc subsp. by analysis of soluble whole-cell protein patterns. J Clin Microbiol 31:1030–1033

    Google Scholar 

  • Farrow JAE, Facklam RR, Collins MD (1989) Nucleic acid homologies of some vancomycin-resistant leuconostocs and description of Leuconostoc citreum sp. nov. and Leuconostoc pseudomesenteroides sp. nov. Int J Syst Bacteriol 39(3):279–283

    Article  Google Scholar 

  • Fujimoto J, Matsuki T, Sasamoto M, Tomii Y, Watanabe K (2008) Identification and quantification of Lactobacillus casei strain Shirota in human feces with strain-specific primers derived from randomly amplified polymorphic DNA. Int J Food Microbiol 126(1–2):210–215

    Article  PubMed  CAS  Google Scholar 

  • Garvie EI (1983) Leuconostoc mesenteroides subsp. cremoris (Knudsen and Sørensen) comb. nov. and Leuconostoc mesenteroides subsp. dextranicum (Beijerinck) comb. nov. Int J Syst Bacteriol 33(1):118–119

    Article  Google Scholar 

  • Giebel RA, Fredenberg W, Sandrin TR (2008) Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res 42(4–5):931–940 Epub 2007 Sep 21

    Article  PubMed  CAS  Google Scholar 

  • Gu CT, Wang F, Li CY, Liu F, Huo GC (2011) Leuconostoc mesenteroides subsp. suionicum subsp. nov., a novel subspecies within Leuconostoc mesenteroides. Int J Syst Evol Microbiol Publ. doi:10.1099/ijs.0.031203-0

  • Hemme D, Foucaud-Scheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14(6):467–494

    Article  Google Scholar 

  • Johanningsmeier S, McFeeters RF, Fleming HP, Thompson RL (2007) Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J Food Sci 72(5):M166–M172

    Article  PubMed  CAS  Google Scholar 

  • Jones JJ, Stump MJ, Fleming RC, Lay JO Jr, Wilkins CL (2003) Investigation of MALDI-TOF and FT-MS techniques for analysis of Escherichia coli whole cells. Anal Chem 75(6):1340–1347

    Article  PubMed  CAS  Google Scholar 

  • Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I (2008) Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. World J Gastroenterol 14(8):1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Ketterlinus R, Hsieh SY, Teng SH, Lee H, Pusch W (2005) Fishing for biomarkers, analyzing mass spectrometry data with the new ClinProTools™ software. BioTechniques 38:37–40

    Article  Google Scholar 

  • Lartigue MF, Héry-Arnaud G, Haguenoer E, Domelier AS, Schmit PO, Van der Mee-Marquet N, Lanotte P, Mereghetti L, Kostrzewa M, Quentin R (2009) Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 47(9):2284–2287

    Article  PubMed  Google Scholar 

  • Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of non fermenting bacteria. J Clin Microbiol 46(6):1946–1954

    Article  PubMed  CAS  Google Scholar 

  • Olsen KN, Brockmann E, Molin S (2007) Quantification of Leuconostoc populations in mixed dairy starter cultures using fluorescence in situ hybridization. J Appl Microbiol 103(4):855–863

    Article  PubMed  CAS  Google Scholar 

  • Pang H, Qin G, Tan Z, Li Z, Wang Y, Cai Y (2011) Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. Syst Appl Microbiol. 34(3):235–241

    Article  PubMed  CAS  Google Scholar 

  • Pederson CS, Albury MN (1969) The sauerkraut fermentation. New York State Agricultural Experiment Station (Geneva, Cornell University) Technical Bulletin 824

  • Pérez G, Cardell E, Zárate V (2000) Protein fingerprinting as a complementary analysis to classical phenotyping for the identification of lactic acid bacteria from Tenerife cheese. Lait 80(6):589–600

    Article  Google Scholar 

  • Pérez G, Cardell E, Zárate V (2002) Random amplified polymorphic DNA analysis for differentiation of Leuconostoc mesenteroides subspecies isolated from Tenerife cheese. Lett Appl Microbiol 34(2):82–85

    Article  PubMed  Google Scholar 

  • Rettinger A, Krupka I, Grünwald K, Dyachenko V, Fingerle V, Konrad R, Raschel H, Busch U, Sing A, Straubinger RK, Huber I (2012) Leptospira spp. strain identification by MALDI TOF MS is an equivalent tool to 16S rRNA gene sequencing and multi locus sequence typing (MLST). BMC Microbiol 12:185

    Article  PubMed  CAS  Google Scholar 

  • Server-Busson C, Foucaud C, Leveau J-Y (1999) Selection of dairy Leuconostoc isolates for important technological properties. J Dairy Res 66:245–256

    Article  CAS  Google Scholar 

  • van Veen SQ, Claas ECJ, Kuijper J (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907

    Article  PubMed  Google Scholar 

  • Vargha M, Takáts Z, Konopka A, Nakatsu CH (2006) Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Method 66:399–409

    Article  CAS  Google Scholar 

  • Vorob’eva LI, Khasaeva FM, Vasilyuk NV, Trenquil E (2011) Characterization of propionic acid bacteria using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Microbiology 80(5):664–671

    Article  Google Scholar 

  • Zhang G, Holley RA (1999) Development and PFGE monitoring of dominance among spoilage lactic acid bacteria from cured meats. Food Microbiol 16(6):633–644

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Marzena Maggipinto, Karola Grünwald, Daniela Sebah and Azuka Iwobi at the Bavarian health and food safety authority as well as Markus Kostrzewa at Bruker Daltonik GmbH for their help. This work was supported by the Bavarian State Ministry of the Environment and Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeller-Péronnet, V., Brockmann, E., Pavlovic, M. et al. Potential and limitations of MALDI-TOF MS for discrimination within the species Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides . J. Verbr. Lebensm. 8, 205–214 (2013). https://doi.org/10.1007/s00003-013-0826-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00003-013-0826-z

Keywords

Navigation