Skip to main content
Log in

Simulation of single slip in FCC metals

  • Published:
Russian Physics Journal Aims and scope

Abstract

The study of single slip was performed by imitation simulation and mathematical simulation methods. In a modified barrier model of constant linear tension, all stages of the process of nucleation and propagation of single crystallographic slip to the field of discrete dislocation obstacles have been simulated and investigated. The equation of dynamics of expansion of an isolated closed planar dislocation loop, which restricts slipping, was used to perform a comparative study of the effect of the mechanisms of resistance to dislocation motion on the characteristics of the resulting single slip. Micromechanical characteristics of each dislocation loop emitted by a dislocation source after loss of stability have been calculated. The time it takes for single slip to propagate up to the barrier configurations that restrict slipping and the total formative time of the crystallographic shear zone have been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Vernadsky, in: Transactions of Imperator’s Moscow University, Nature and History Department, Physics and Crystallography Studies [in Russian], University Printing House, Moscow (1897), p. 182.

    Google Scholar 

  2. M. I. Slobodskoi and L. E. Popov, Izv. Akad. Nauk, 62, 1339–1344 (1998).

    Google Scholar 

  3. M. I. Slobodskoi and L. E. Popov, Study of the Phenomenon of Slipping in Crystals by Methods of Imitating Simulation [in Russian], Tomsk State University of Architecture and Building Publishers, Tomsk (2004).

    Google Scholar 

  4. S. I. Puspesheva, S. N. Kolupaeva, and L. E. Popov, Fiz. Mezomekhanika, 3, 3, 61–68 (2000).

    Google Scholar 

  5. L. E. Popov, S. N. Kolupaeva, M. I. Slobodskoi, and S. I. Puspesheva, Vestnik Tambovskogo Universiteta, 5, No. 2–3, 214–216 (2000).

    Google Scholar 

  6. V. S. Kobytev, M. I. Slobodskoi, and A. A. Russiyan, Computer Simulation of the Processes of Interaction and Slipping of Dislocations [in Russian], Tomsk State University Publishers, Tomsk (1990).

    Google Scholar 

  7. A. M. Kosevich, Usp. Fiz. Nauk, 84, 579–609 (1964).

    Google Scholar 

  8. D. Kuhlmann-Wilsdorf, Dislocations, in: Physical Metallurgy [Russian translation], Mir, Moscow (1967), pp. 9–86.

    Google Scholar 

  9. T. Sudzuki, Kh. Esinaga, and S. Takeuti, Dynamics of Dislocations and Plasticity [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  10. A. M. Kosevich, Dislocations in the Elasticity Theory (Effect of Dislocations on Mechanical Properties of Crystals), Naukova Dumka, Kiev (1978).

    Google Scholar 

  11. J. Hirth and J. Lothe, Theory of Dislocations, Wiley, NY (1982).

    Google Scholar 

  12. H. Müller and G. Leibfried, Zeitschift für Physik, 142, 87–115 (1955).

    Article  Google Scholar 

  13. A. Lüft, Progress in Material Science, 35, No. 4, 97 (1991).

    Article  Google Scholar 

  14. H. Neuhauser, in: Dislocations in Solids, Nort-Holland (1983), Vol. 6, pp. 319–440.

    Google Scholar 

  15. L. E. Popov, S. N. Kolupaeva, N. A. Vihor, and S. I. Puspescheva, Computat. Mater. Sci., 19, 267–274 (2000).

    Article  Google Scholar 

  16. S. I. Puspesheva, S. N. Kolupaeva, and L. E. Popov, Materialovedenie, 9, 14–19 (2003).

    Google Scholar 

  17. A. S. Argon, Phil. Mag., 25, 1053–1072 (1972).

    Google Scholar 

  18. T. Cadman and R. J. Arsenault, Scr. Metallurgica, 6, No. 7, 593–599 (1972).

    Article  Google Scholar 

  19. Y. F. Kocks, in: Physics of Strength and Plasticity [Russian translation], Metallurgia, Moscow (1972), pp. 117–132.

    Google Scholar 

  20. J. W. Morris, Jr., and D. H. Klahn, J. Appl. Phys., 44, 4882–4890 (1973).

    Article  Google Scholar 

  21. A. I. Landau, Phys. Stat. Sol. (a), 30, 659–669 (1975).

    Google Scholar 

  22. V. V. Blagoveschensky and N. A. Tyapunina, Dokl. AN SSSR, 254, 869–872 (1980).

    Google Scholar 

  23. V. R. Parameswaran and J. Weertman, Met. Trans., 2, 1233–1243 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 57–68, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, L.E., Slobodskoi, M.I. & Kolupaeva, S.N. Simulation of single slip in FCC metals. Russ Phys J 49, 62–73 (2006). https://doi.org/10.1007/s00000-006-0070-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00000-006-0070-8

Keywords

Navigation