J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
L. F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in \( \mathcal{N} \) = 4 SYM and defect 1d CFT, JHEP 03 (2018) 131 [arXiv:1712.06874] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Beccaria, S. Giombi and A. A. Tseytlin, Correlators on non-supersymmetric Wilson line in \( \mathcal{N} \) = 4 SYM and AdS2/CFT1, JHEP 05 (2019) 122 [arXiv:1903.04365] [INSPIRE].
ADS
MATH
Google Scholar
K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].
ADS
Google Scholar
J. K. Erickson, G. W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
N. Drukker and D. J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22 (2007) 1353 [hep-th/0601089] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [INSPIRE].
ADS
MathSciNet
Google Scholar
E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063 [arXiv:0705.1004] [INSPIRE].
ADS
MathSciNet
Google Scholar
E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
O. Aharony, Y. E. Antebi, M. Berkooz and R. Fishman, ‘Holey sheets’: Pfaffians and subdeterminants as D-brane operators in large N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].
ADS
MathSciNet
Google Scholar
E. Witten, Current Algebra, Baryons, and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Fiol, B. Garolera and G. Torrents, Exact probes of orientifolds, JHEP 09 (2014) 169 [arXiv:1406.5129] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Giombi, R. Roiban and A. A. Tseytlin, Half-BPS Wilson loop and AdS2/CFT1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].
ADS
MATH
Google Scholar
P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP 10 (2018) 077 [arXiv:1806.01862] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
N. Kiryu and S. Komatsu, Correlation Functions on the Half-BPS Wilson Loop: Perturbation and Hexagonalization, JHEP 02 (2019) 090 [arXiv:1812.04593] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in \( \mathcal{N} \) = 4 SYM: Localization, Defect CFT, and Integrability, JHEP 05 (2018) 109 [Erratum ibid. 11 (2018) 123] [arXiv:1802.05201] [INSPIRE].
S. Giombi, J. Jiang and S. Komatsu, Giant Wilson loops and AdS2/dCFT1, JHEP 11 (2020) 064 [arXiv:2005.08890] [INSPIRE].
ADS
Google Scholar
D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
ADS
MathSciNet
Google Scholar
E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. Bessis, C. Itzykson and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. Appl. Math. 1 (1980) 109 [INSPIRE].
MathSciNet
MATH
Google Scholar
M. Mariño, Les Houches lectures on matrix models and topological strings, (2004) [hep-th/0410165] [INSPIRE].
B. Zumino, Normal Forms of Complex Matrices, J. Math. Phys. 3 (1962) 1055.
ADS
MathSciNet
MATH
Google Scholar
M. L. Mehta and N. Rosenzweig, Distribution laws for the roots of a random antisymmetric hermitian matrix, Nucl. Phys. A 109 (1968) 449 [INSPIRE].
ADS
Google Scholar
M. L. Mehta and A. Pandey, On Some Gaussian Ensembles of Hermitian Matrices, J. Phys. A 16 (1983) 2655 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. K. Ashok, R. Corrado, N. Halmagyi, K. D. Kennaway and C. Romelsberger, Unoriented strings, loop equations, and N = 1 superpotentials from matrix models, Phys. Rev. D 67 (2003) 086004 [hep-th/0211291] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. B. Balantekin and P. Cassak, Character expansions for the orthogonal and symplectic groups, J. Math. Phys. 43 (2002) 604 [hep-th/0108130] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C. Hoyos, A defect action for Wilson loops, JHEP 07 (2018) 045 [arXiv:1803.09809] [INSPIRE].
ADS
MATH
Google Scholar
S. A. Hartnoll and S. P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08 (2006) 026 [hep-th/0605027] [INSPIRE].
ADS
MathSciNet
Google Scholar
O. Bergman, E. G. Gimon and S. Sugimoto, Orientifolds, RR torsion, and k-theory, JHEP 05 (2001) 047 [hep-th/0103183] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Blau, K. S. Narain and E. Gava, On subleading contributions to the AdS /CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007).
M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].
ADS
MathSciNet
Google Scholar
H. Casini, M. Huerta and R. C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Beccaria and A. A. Tseytlin, Higher spins in AdS5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].
ADS
Google Scholar
N. Drukker, D. J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS5 × S5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].
ADS
MATH
Google Scholar
E. I. Buchbinder and A. A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].
ADS
Google Scholar
V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS5 × S5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].
ADS
MATH
Google Scholar
A. Faraggi, L. A. Pando Zayas, G. A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
V. Forini, A. A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS5 × S5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].
ADS
MATH
Google Scholar
A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop and anomalies, JHEP 02 (2018) 120 [arXiv:1712.07730] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. Medina-Rincon, A. A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS5 × S5, JHEP 05 (2018) 199 [arXiv:1804.08925] [INSPIRE].
ADS
MATH
Google Scholar
L. Botao and D. Medina-Rincon, On precision holography for the circular Wilson loop in AdS5 × S5, Phys. Lett. B 810 (2020) 135789 [arXiv:2007.15760] [INSPIRE].
MathSciNet
MATH
Google Scholar
S. Giombi and A. A. Tseytlin, Strong coupling expansion of circular Wilson loops and string theories in AdS5 × S5 and AdS4 × CP3, JHEP 10 (2020) 130 [arXiv:2007.08512] [INSPIRE].
ADS
MATH
Google Scholar
N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arXiv:1511.08771 [INSPIRE].
C. V. Johnson, D-brane primer, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and Gravity, (2000), pp. 129–350, DOI [hep-th/0007170] [INSPIRE].
S. A. Hartnoll, Two universal results for Wilson loops at strong coupling, Phys. Rev. D 74 (2006) 066006 [hep-th/0606178] [INSPIRE].
ADS
MathSciNet
Google Scholar
J. M. Camino, A. Paredes and A. V. Ramallo, Stable wrapped branes, JHEP 05 (2001) 011 [hep-th/0104082] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Harrison, S. Kachru and G. Torroba, A maximally supersymmetric Kondo model, Class. Quant. Grav. 29 (2012) 194005 [arXiv:1110.5325] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Faraggi and L. A. Pando Zayas, The Spectrum of Excitations of Holographic Wilson Loops, JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Faraggi, W. Mueck and L. A. Pando Zayas, One-loop Effective Action of the Holographic Antisymmetric Wilson Loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].
ADS
Google Scholar
A. Faraggi, J. T. Liu, L. A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett. B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].
ADS
MATH
Google Scholar
D. H. Correa and F. I. Schaposnik Massolo, D5-brane boundary reflection factors, JHEP 05 (2013) 095 [arXiv:1301.3412] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Mukhi and M. Smedback, Bubbling orientifolds, JHEP 08 (2005) 005 [hep-th/0506059] [INSPIRE].
ADS
MathSciNet
Google Scholar
T. van Ritbergen, A. N. Schellekens and J. A. M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].
L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras, vol. 10, Academic Press San Diego, CA, U.S.A. (2000).