Skip to main content

Wilson loops in \( \mathcal{N} \) = 4 SO(N) SYM and D-branes in AdS5 × ℝℙ5

A preprint version of the article is available at arXiv.

Abstract

We study the half-BPS circular Wilson loop in \( \mathcal{N} \) = 4 super Yang-Mills with orthogonal gauge group. By supersymmetric localization, its expectation value can be computed exactly from a matrix integral over the Lie algebra of SO(N). We focus on the large N limit and present some simple quantitative tests of the duality with type IIB string theory in AdS5 × ℝℙ5. In particular, we show that the strong coupling limit of the expectation value of the Wilson loop in the spinor representation of the gauge group precisely matches the classical action of the dual string theory object, which is expected to be a D5-brane wrapping a ℝℙ4 subspace of ℝℙ5. We also briefly discuss the large N, large λ limits of the SO(N) Wilson loop in the symmetric/antisymmetric representations and their D3/D5-brane duals. Finally, we use the D5-brane description to extract the leading strong coupling behavior of the “bremsstrahlung function” associated to a spinor probe charge, or equivalently the normalization of the two-point function of the displacement operator on the spinor Wilson loop, and obtain agreement with the localization prediction.

References

  1. J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. L. F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  8. M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in \( \mathcal{N} \) = 4 SYM and defect 1d CFT, JHEP 03 (2018) 131 [arXiv:1712.06874] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. M. Beccaria, S. Giombi and A. A. Tseytlin, Correlators on non-supersymmetric Wilson line in \( \mathcal{N} \) = 4 SYM and AdS2/CFT1, JHEP 05 (2019) 122 [arXiv:1903.04365] [INSPIRE].

    ADS  MATH  Google Scholar 

  10. K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].

    ADS  Google Scholar 

  12. J. K. Erickson, G. W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. N. Drukker and D. J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22 (2007) 1353 [hep-th/0601089] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP 06 (2007) 063 [arXiv:0705.1004] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. O. Aharony, Y. E. Antebi, M. Berkooz and R. Fishman, ‘Holey sheets’: Pfaffians and subdeterminants as D-brane operators in large N gauge theories, JHEP 12 (2002) 069 [hep-th/0211152] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. E. Witten, Current Algebra, Baryons, and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. B. Fiol, B. Garolera and G. Torrents, Exact probes of orientifolds, JHEP 09 (2014) 169 [arXiv:1406.5129] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. S. Giombi, R. Roiban and A. A. Tseytlin, Half-BPS Wilson loop and AdS2/CFT1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

    ADS  MATH  Google Scholar 

  28. P. Liendo, C. Meneghelli and V. Mitev, Bootstrapping the half-BPS line defect, JHEP 10 (2018) 077 [arXiv:1806.01862] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. N. Kiryu and S. Komatsu, Correlation Functions on the Half-BPS Wilson Loop: Perturbation and Hexagonalization, JHEP 02 (2019) 090 [arXiv:1812.04593] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in \( \mathcal{N} \) = 4 SYM: Localization, Defect CFT, and Integrability, JHEP 05 (2018) 109 [Erratum ibid. 11 (2018) 123] [arXiv:1802.05201] [INSPIRE].

  32. S. Giombi, J. Jiang and S. Komatsu, Giant Wilson loops and AdS2/dCFT1, JHEP 11 (2020) 064 [arXiv:2005.08890] [INSPIRE].

    ADS  Google Scholar 

  33. D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  35. D. Bessis, C. Itzykson and J. B. Zuber, Quantum field theory techniques in graphical enumeration, Adv. Appl. Math. 1 (1980) 109 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  36. M. Mariño, Les Houches lectures on matrix models and topological strings, (2004) [hep-th/0410165] [INSPIRE].

  37. B. Zumino, Normal Forms of Complex Matrices, J. Math. Phys. 3 (1962) 1055.

    ADS  MathSciNet  MATH  Google Scholar 

  38. M. L. Mehta and N. Rosenzweig, Distribution laws for the roots of a random antisymmetric hermitian matrix, Nucl. Phys. A 109 (1968) 449 [INSPIRE].

    ADS  Google Scholar 

  39. M. L. Mehta and A. Pandey, On Some Gaussian Ensembles of Hermitian Matrices, J. Phys. A 16 (1983) 2655 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. S. K. Ashok, R. Corrado, N. Halmagyi, K. D. Kennaway and C. Romelsberger, Unoriented strings, loop equations, and N = 1 superpotentials from matrix models, Phys. Rev. D 67 (2003) 086004 [hep-th/0211291] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. A. B. Balantekin and P. Cassak, Character expansions for the orthogonal and symplectic groups, J. Math. Phys. 43 (2002) 604 [hep-th/0108130] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. C. Hoyos, A defect action for Wilson loops, JHEP 07 (2018) 045 [arXiv:1803.09809] [INSPIRE].

    ADS  MATH  Google Scholar 

  43. S. A. Hartnoll and S. P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08 (2006) 026 [hep-th/0605027] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. O. Bergman, E. G. Gimon and S. Sugimoto, Orientifolds, RR torsion, and k-theory, JHEP 05 (2001) 047 [hep-th/0103183] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. M. Blau, K. S. Narain and E. Gava, On subleading contributions to the AdS /CFT trace anomaly, JHEP 09 (1999) 018 [hep-th/9904179] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  46. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2007).

  47. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. D. E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. H. Casini, M. Huerta and R. C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. M. Beccaria and A. A. Tseytlin, Higher spins in AdS5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].

    ADS  Google Scholar 

  52. N. Drukker, D. J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS5 × S5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].

    ADS  MATH  Google Scholar 

  55. E. I. Buchbinder and A. A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].

    ADS  Google Scholar 

  56. V. Forini, V. Giangreco M. Puletti, L. Griguolo, D. Seminara and E. Vescovi, Precision calculation of 1/4-BPS Wilson loops in AdS5 × S5, JHEP 02 (2016) 105 [arXiv:1512.00841] [INSPIRE].

    ADS  MATH  Google Scholar 

  57. A. Faraggi, L. A. Pando Zayas, G. A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  58. V. Forini, A. A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS5 × S5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].

    ADS  MATH  Google Scholar 

  59. A. Cagnazzo, D. Medina-Rincon and K. Zarembo, String corrections to circular Wilson loop and anomalies, JHEP 02 (2018) 120 [arXiv:1712.07730] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  60. D. Medina-Rincon, A. A. Tseytlin and K. Zarembo, Precision matching of circular Wilson loops and strings in AdS5 × S5, JHEP 05 (2018) 199 [arXiv:1804.08925] [INSPIRE].

    ADS  MATH  Google Scholar 

  61. L. Botao and D. Medina-Rincon, On precision holography for the circular Wilson loop in AdS5 × S5, Phys. Lett. B 810 (2020) 135789 [arXiv:2007.15760] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  62. S. Giombi and A. A. Tseytlin, Strong coupling expansion of circular Wilson loops and string theories in AdS5 × S5 and AdS4 × CP3, JHEP 10 (2020) 130 [arXiv:2007.08512] [INSPIRE].

    ADS  MATH  Google Scholar 

  63. N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arXiv:1511.08771 [INSPIRE].

  64. C. V. Johnson, D-brane primer, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 99): Strings, Branes, and Gravity, (2000), pp. 129–350, DOI [hep-th/0007170] [INSPIRE].

  65. S. A. Hartnoll, Two universal results for Wilson loops at strong coupling, Phys. Rev. D 74 (2006) 066006 [hep-th/0606178] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. J. M. Camino, A. Paredes and A. V. Ramallo, Stable wrapped branes, JHEP 05 (2001) 011 [hep-th/0104082] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  67. M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  68. D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d+1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  69. S. Harrison, S. Kachru and G. Torroba, A maximally supersymmetric Kondo model, Class. Quant. Grav. 29 (2012) 194005 [arXiv:1110.5325] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  70. A. Faraggi and L. A. Pando Zayas, The Spectrum of Excitations of Holographic Wilson Loops, JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  71. A. Faraggi, W. Mueck and L. A. Pando Zayas, One-loop Effective Action of the Holographic Antisymmetric Wilson Loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].

    ADS  Google Scholar 

  72. A. Faraggi, J. T. Liu, L. A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett. B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].

    ADS  MATH  Google Scholar 

  73. D. H. Correa and F. I. Schaposnik Massolo, D5-brane boundary reflection factors, JHEP 05 (2013) 095 [arXiv:1301.3412] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson loops from D-branes and matrix models, JHEP 10 (2006) 045 [hep-th/0608077] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. S. Mukhi and M. Smedback, Bubbling orientifolds, JHEP 08 (2005) 005 [hep-th/0506059] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  76. T. van Ritbergen, A. N. Schellekens and J. A. M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

  77. L. Frappat, A. Sciarrino and P. Sorba, Dictionary on Lie algebras and superalgebras, vol. 10, Academic Press San Diego, CA, U.S.A. (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bendeguz Offertaler.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.10852

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giombi, S., Offertaler, B. Wilson loops in \( \mathcal{N} \) = 4 SO(N) SYM and D-branes in AdS5 × ℝℙ5. J. High Energ. Phys. 2021, 16 (2021). https://doi.org/10.1007/JHEP10(2021)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2021)016

Keywords

  • AdS-CFT Correspondence
  • D-branes
  • Matrix Models
  • Wilson
  • ’t Hooft and Polyakov loops