Abstract
We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.
References
S. Carlip, Quantum gravity in 2+1 dimensions, Cambridge University Press, Cambridge U.K. (1998).
C. Krishnan, Quantum Field Theory, Black Holes and Holography, arXiv:1011.5875 [INSPIRE].
G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
C. Krishnan, A. Raju and P.N.B. Subramanian, A Dynamical Boundary for Anti-de Sitter Space, arXiv:1609.06300 [INSPIRE].
J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].
C. Krishnan and A. Raju, A Neumann Boundary Term for Gravity, arXiv:1605.01603 [INSPIRE].
J.D. Brown and J.W. York Jr., The Microcanonical functional integral. 1. The Gravitational field, Phys. Rev. D 47 (1993) 1420 [gr-qc/9209014] [INSPIRE].
J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
S. Detournay, D. Grumiller, F. Schöller and J. Simón, Variational principle and one-point functions in three-dimensional flat space Einstein gravity, Phys. Rev. D 89 (2014) 084061 [arXiv:1402.3687] [INSPIRE].
K. Parattu, S. Chakraborty, B.R. Majhi and T. Padmanabhan, A Boundary Term for the Gravitational Action with Null Boundaries, Gen. Rel. Grav. 48 (2016) 94 [arXiv:1501.01053] [INSPIRE].
K. Parattu, S. Chakraborty and T. Padmanabhan, Variational Principle for Gravity with Null and Non-null boundaries: A Unified Boundary Counter-term, Eur. Phys. J. C 76 (2016) 129 [arXiv:1602.07546] [INSPIRE].
S. Chakraborty, Boundary terms of the Einstein-Hilbert action, arXiv:1607.05986 [INSPIRE].
P. van Nieuwenhuizen and D.V. Vassilevich, Consistent boundary conditions for supergravity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172] [INSPIRE].
I.Y. Park, Holographic quantization of gravity in a black hole background, J. Math. Phys. 57 (2016) 022305 [arXiv:1508.03874] [INSPIRE].
I.Y. Park, Reduction of gravity-matter and dS gravity to hypersurface, arXiv:1512.08060 [INSPIRE].
D. Grumiller, R.B. Mann and R. McNees, Dirichlet boundary value problem for Chern-Simons modified gravity, Phys. Rev. D 78 (2008) 081502 [arXiv:0803.1485] [INSPIRE].
D. Grumiller, M. Irakleidou, I. Lovrekovic and R. McNees, Conformal gravity holography in four dimensions, Phys. Rev. Lett. 112 (2014) 111102 [arXiv:1310.0819] [INSPIRE].
P. Basu, C. Krishnan and P.N.B. Subramanian, Hairy Black Holes in a Box, arXiv:1609.01208 [INSPIRE].
G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].
P. Mora, R. Olea, R. Troncoso and J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06 (2004) 036 [hep-th/0405267] [INSPIRE].
M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043 [arXiv:1108.5152] [INSPIRE].
E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics, Cambridge University Press, Cambridge U.K. (2004).
S. Carlip, M. Clements, S. Della Pietra and V. Della Pietra, Sewing Polyakov Amplitudes. 1. Sewing at a fixed conformal structure, Commun. Math. Phys. 127 (1990) 253 [INSPIRE].
E. Witten, On Holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [INSPIRE].
A.W. Peet, TASI lectures on black holes in string theory, hep-th/0008241 [INSPIRE].
R. Bousso, Adventures in de Sitter space, hep-th/0205177 [INSPIRE].
M. Chaichian and I. Senda, Quantum field theory at finite energy, Nucl. Phys. B 396 (1993) 737 [INSPIRE].
J.D. Brown, E.A. Martinez and J.W. York Jr., Complex Kerr-Newman geometry and black hole thermodynamics, Phys. Rev. Lett. 66 (1991) 2281 [INSPIRE].
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].
S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].
C. Krishnan, Tomograms of Spinning Black Holes, Phys. Rev. D 80 (2009) 126014 [arXiv:0911.0597] [INSPIRE].
B.S. Kay and R.M. Wald, Theorems on the Uniqueness and Thermal Properties of Stationary, Nonsingular, Quasifree States on Space-Times with a Bifurcate Killing Horizon, Phys. Rept. 207 (1991) 49 [INSPIRE].
C. Krishnan, Black Hole Vacua and Rotation, Nucl. Phys. B 848 (2011) 268 [arXiv:1005.1629] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1609.04719
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Krishnan, C., Kumar, K.V.P. & Raju, A. An alternative path integral for quantum gravity. J. High Energ. Phys. 2016, 43 (2016). https://doi.org/10.1007/JHEP10(2016)043
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2016)043
Keywords
- AdS-CFT Correspondence
- Black Holes
- Classical Theories of Gravity