Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Toy models of holographic duality between local Hamiltonians

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 August 2019
  • volume 2019, Article number: 17 (2019)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Toy models of holographic duality between local Hamiltonians
Download PDF
  • Tamara Kohler1 &
  • Toby Cubitt1 
  • 550 Accesses

  • 25 Citations

  • 6 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Holographic quantum error correcting codes (HQECC) have been proposed as toy models for the AdS/CFT correspondence, and exhibit many of the features of the duality. HQECC give a mapping of states and observables. However, they do not map local bulk Hamiltonians to local Hamiltonians on the boundary. In this work, we combine HQECC with Hamiltonian simulation theory to construct a bulk-boundary mapping between local Hamiltonians, whilst retaining all the features of the HQECC duality. This allows us to construct a duality between models, encompassing the relationship between bulk and boundary energy scales and time dynamics.

It also allows us to construct a map in the reverse direction: from local boundary Hamiltonians to the corresponding local Hamiltonian in the bulk. Under this boundary-to-bulk mapping, the bulk geometry emerges as an approximate, low-energy, effective theory living in the code-space of an (approximate) HQECC on the boundary. At higher energy scales, this emergent bulk geometry is modified in a way that matches the toy models of black holes proposed previously for HQECC. Moreover, the duality on the level of dynamics shows how these toy-model black holes can form dynamically.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. X.D. Ahmed Almheiri and D. Harlow, Bulk locality and quantum error correction in Ads/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. B. Swingle, Entanglement renormalization and holography, Phys. Rev.D 46 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

  5. B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].

  6. Z. Yang, P. Hayden and X.L. Qi, Bidirectional holographic codes and sub-AdS locality, JHEP01 (2016) 175 [arXiv:1510.03784] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Hayden et al., Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Bhattacharyya, Z.S. Gao, L.Y. Hung and S.N. liu, Exploring the tensor networks/AdS correspondence, JHEP08 (2016) 086 [arXiv:1606.00621] [INSPIRE].

  9. T.J. Osborne and D.E. Stiegemann, Dynamics for holographic codes, arXiv:1706.08823 [INSPIRE].

  10. T. Cubitt, A. Montanaro and S. Piddock, Universal quantum Hamiltonians, Proce. Natl. Acad. Sci.115 (2018) 9497 [arXiv:1701.05182].

    Article  ADS  MathSciNet  Google Scholar 

  11. M.P. Woods and A.M. Alhambra, Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames, arXiv:1902.07725 [INSPIRE].

  12. P. Faist et al., Continuous symmetries and approximate quantum error correction, arXiv:1902.07714 [INSPIRE].

  13. A.L.M. Headrick, V.E. Hubeny and M. Rangamani, Causality and holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K.G. Wilson, Renormalization group and critical phenomena. I: renormalization group and the Kadanoff scaling pictre, Phys. Rev.B 4 (1971) 3174.

  15. K.G. Wilson, The renormalization group and critical phenomena. II: phase space cell analysis of critical behavior, Phys. Rev.B 4 (1971) 3184.

  16. R. Oliveira and B. Terhal, The complexity of quantum spin systems on a two-dimensional square lattice, Quant. Inf. Comput.8 (2005) 0900 [quant-ph/0504050].

  17. G. Gour and N.R. Wallach, All maximally entangled four-qubit states, J. Math. Phys.51 (2010)112201 [arXiv:1006.0036].

    Article  ADS  MathSciNet  Google Scholar 

  18. E.M. Rains, Quantum codes of minimum distance two, IEEE Trans. Inf. Theor.45 (1999) 266 [quant-ph/9704043] [INSPIRE].

  19. F. Huber, O. Guene and J. Siewert, Absolutely maximally entanged states of seven qubits do not exist, Phys. Rev. Lett.118 (2017) 200502 [arXiv:1608.06228].

    Article  ADS  Google Scholar 

  20. W. Helwig, Absolutely maximally entangled qudit graph states, arXiv:1306.2879.

  21. S. Bravyi and M. Hastings, On complexity of the quantum Ising model, Comm. Math. Phys.349 (2017)1 [arXiv:1410.0703] [INSPIRE].

  22. J. Beckenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333.

  23. S.W. Hawking, Particle creation by black holes, Comm. Math. Phys.43 (1975) 199.

    Article  ADS  MathSciNet  Google Scholar 

  24. P. Hayden and G. Penington, Learning the alpha-bits of black holes, arXiv:1807.06041 [INSPIRE].

  25. D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Nezami and M. Walter, Multipartite entanglement in stabilizer tensor networks, arXiv:1608.02595 [INSPIRE].

  29. A. Felikson and P. Tumarkin, Hyperbolic Coxeter polytopes, http://www.maths.dur.ac.uk/users/anna.felikson/Polytopes/polytopes.html.

  30. J. Tits, Groupes et géométries de Coxeter, (1961)

  31. M.W. Davis, The geometry and topology of Coxeter groups, Princeton University Press, Princeton U.S.A. (2007).

  32. E.B. Vinberg, Hyperbolic reflection groups, Russian Math. Surveys40 (1985) 31.

    Article  ADS  Google Scholar 

  33. P. Abramenko and K. Brown, Buildings theory and applications, Graduate Texts in Mathematics, Springer, Germany (2008).

    Book  Google Scholar 

  34. A.M. Cohen, Finite Coxeter groups, lecture notes (2008).

  35. J. Weeks, Kaleidotile, http://geometrygames.org/KaleidoTile/index.html.

  36. D. Aharonov and L. Zhou, Hamiltonian sparsification and gap-simulation, arXiv:1804.11084.

  37. S. Piddock and A. Montanaro, The complexity of antiferromagnetic interactions and 2d lattices, Quant. Inf. Comput.17 (2015) 636 [arXiv:1506.04014].

    MathSciNet  Google Scholar 

  38. R. Guglielmetti, CoxiterWeb, https://coxiterweb.rafaelguglielmetti.ch.

  39. W. Helwig and W. Cui, Absolutely maximally entangled states: existence and applications, arXiv:1306.2536.

  40. D. Goyeneche et al., Absolutely maximally entangled states, combinatorial design and multi-unitary matrices, Phys. Rev.A 92 (2015) 032316 [arXiv:1506.08857] [INSPIRE].

  41. W. Helwig et al., Absolute maximal entanglement and quantum secret sharing, Phys. Rev.A 86 (2012)052335 [arXiv:1204.2289] [INSPIRE].

  42. R. Cleve, D. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett.83 (1999) 648 [quant-ph/9901025] [INSPIRE].

  43. V. Gheorghiu, Standard form of qudit stabilizer groups, Phys. Lett.A 378 (2014) 505 [arXiv:1101.1519].

  44. H. Kurzweil and B. Stellmacher, The theory of finite groups: an introduction, Springer, Germany (2004).

  45. D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, Caltech, Pasadena, U.S.A. (1997).

  46. I. Reed and G. Solomon, Polynomial codes over certain finite fields, J. Soc. Industr. Appl. Math.8 (1960) 300.

    Article  MathSciNet  Google Scholar 

  47. G. Seroussi and R. Roth, On MDS extensions of generalized Reed-Solomon codes, IEEE Trans. Inf. Theor.32 (1986) 349.

    Article  MathSciNet  Google Scholar 

  48. M. Grassl and M. Roetteler, Quantum MDS codes over small fields, IEEE Proc. Int. Symp. Inf. Theor. (2015) 1104 [arXiv:1502.05267].

  49. T. Kohler and T. Cubitt, Translationally invariant universal classical Hamiltonians, J. Stat. Phys.176 (2019) 228 [arXiv:1807.01715].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Computer Science, University College London, Gower St, Bloomsbury, London, WC1E 6EA, U.K.

    Tamara Kohler & Toby Cubitt

Authors
  1. Tamara Kohler
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Toby Cubitt
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tamara Kohler.

Additional information

ArXiv ePrint: 1810.08992

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohler, T., Cubitt, T. Toy models of holographic duality between local Hamiltonians. J. High Energ. Phys. 2019, 17 (2019). https://doi.org/10.1007/JHEP08(2019)017

Download citation

  • Received: 11 April 2019

  • Accepted: 24 July 2019

  • Published: 05 August 2019

  • DOI: https://doi.org/10.1007/JHEP08(2019)017

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature