Abstract
We give the first numerical calculation of the spectrum of the Laplacian acting on bundle-valued forms on a Calabi-Yau three-fold. Specifically, we show how to compute the approximate eigenvalues and eigenmodes of the Dolbeault Laplacian acting on bundle-valued (p, q)-forms on Kähler manifolds. We restrict our attention to line bundles over complex projective space and Calabi-Yau hypersurfaces therein. We give three examples. For two of these, ℙ3 and a Calabi-Yau one-fold (a torus), we compare our numerics with exact results available in the literature and find complete agreement. For the third example, the Fermat quintic three-fold, there are no known analytic results, so our numerical calculations are the first of their kind. The resulting spectra pass a number of non-trivial checks that arise from Serre duality and the Hodge decomposition. The outputs of our algorithm include all the ingredients one needs to compute physical Yukawa couplings in string compactifications.
References
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [INSPIRE].
A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The Universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].
R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard models from heterotic M theory, Adv. Theor. Math. Phys. 5 (2002) 93 [hep-th/9912208] [INSPIRE].
V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].
R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].
O. Lebedev et al., A Mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [INSPIRE].
P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 429 [arXiv:0706.3134] [INSPIRE].
O. Lebedev et al., Heterotic mini-landscape. (II). Completing the search for MSSM vacua in a Z(6) orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [INSPIRE].
M. Ambroso and B.A. Ovrut, The Mass Spectra, Hierarchy and Cosmology of B-L MSSM Heterotic Compactifications, Int. J. Mod. Phys. A 26 (2011) 1569 [arXiv:1005.5392] [INSPIRE].
D.K. Mayorga Pena, H.P. Nilles and P.-K. Oehlmann, A Zip-code for Quarks, Leptons and Higgs Bosons, JHEP 12 (2012) 024 [arXiv:1209.6041] [INSPIRE].
L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].
L.B. Anderson et al., A Comprehensive Scan for Heterotic SU(5) GUT models, JHEP 01 (2014) 047 [arXiv:1307.4787] [INSPIRE].
P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].
B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Superstring Inspired Standard Model, Phys. Lett. B 180 (1986) 69 [INSPIRE].
B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring Model. 1. Compactification and Discrete Symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].
B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring Model. 2. Symmetry Breaking and the Low-Energy Theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].
T. Matsuoka and D. Suematsu, Realistic Models From the E(8) X E(8)-prime Superstring Theory, Prog. Theor. Phys. 76 (1986) 886 [INSPIRE].
B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, 273 Yukawa Couplings for a Three Generation Superstring Model, Phys. Lett. B 192 (1987) 111 [INSPIRE].
R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard model bundles, Adv. Theor. Math. Phys. 5 (2002) 563 [math/0008010] [INSPIRE].
V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic standard models, JHEP 04 (2006) 019 [hep-th/0601204] [INSPIRE].
L.B. Anderson, J. Gray and B. Ovrut, Yukawa Textures From Heterotic Stability Walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].
M. Headrick and T. Wiseman, Numerical Ricci-flat metrics on K3, Class. Quant. Grav. 22 (2005) 4931 [hep-th/0506129] [INSPIRE].
S.K. Donaldson, Some numerical results in complex differential geometry, math/0512625.
M.R. Douglas, R.L. Karp, S. Lukic and R. Reinbacher, Numerical Calabi-Yau metrics, J. Math. Phys. 49 (2008) 032302 [hep-th/0612075] [INSPIRE].
M.R. Douglas, R.L. Karp, S. Lukic and R. Reinbacher, Numerical solution to the hermitian Yang-Mills equation on the Fermat quintic, JHEP 12 (2007) 083 [hep-th/0606261] [INSPIRE].
V. Braun, T. Brelidze, M.R. Douglas and B.A. Ovrut, Calabi-Yau Metrics for Quotients and Complete Intersections, JHEP 05 (2008) 080 [arXiv:0712.3563] [INSPIRE].
M. Headrick and A. Nassar, Energy functionals for Calabi-Yau metrics, Adv. Theor. Math. Phys. 17 (2013) 867 [arXiv:0908.2635] [INSPIRE].
W. Cui and J. Gray, Numerical Metrics, Curvature Expansions and Calabi-Yau Manifolds, JHEP 05 (2020) 044 [arXiv:1912.11068] [INSPIRE].
L.B. Anderson, V. Braun, R.L. Karp and B.A. Ovrut, Numerical Hermitian Yang-Mills Connections and Vector Bundle Stability in Heterotic Theories, JHEP 06 (2010) 107 [arXiv:1004.4399] [INSPIRE].
L.B. Anderson, V. Braun and B.A. Ovrut, Numerical Hermitian Yang-Mills Connections and Kahler Cone Substructure, JHEP 01 (2012) 014 [arXiv:1103.3041] [INSPIRE].
W. Cui, Numerical Hermitian Yang-Mills Connection for Bundles on Quotient Manifold, arXiv:2302.09622 [INSPIRE].
L.B. Anderson et al., Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning, JHEP 05 (2021) 013 [arXiv:2012.04656] [INSPIRE].
A. Ashmore, Y.-H. He and B.A. Ovrut, Machine Learning Calabi–Yau Metrics, Fortsch. Phys. 68 (2020) 2000068 [arXiv:1910.08605] [INSPIRE].
M.R. Douglas, S. Lakshminarasimhan and Y. Qi, Numerical Calabi-Yau metrics from holomorphic networks, arXiv:2012.04797 [INSPIRE].
V. Jejjala, D.K. Mayorga Pena and C. Mishra, Neural network approximations for Calabi-Yau metrics, JHEP 08 (2022) 105 [arXiv:2012.15821] [INSPIRE].
A. Ashmore, L. Calmon, Y.-H. He and B.A. Ovrut, Calabi-Yau Metrics, Energy Functionals and Machine-Learning, Int. J. Data Science in the Math. Sci. 1 (2023) 49 [arXiv:2112.10872] [INSPIRE].
A. Ashmore, R. Deen, Y.-H. He and B.A. Ovrut, Machine learning line bundle connections, Phys. Lett. B 827 (2022) 136972 [arXiv:2110.12483] [INSPIRE].
M. Larfors, A. Lukas, F. Ruehle and R. Schneider, Learning Size and Shape of Calabi-Yau Spaces, arXiv:2111.01436 [INSPIRE].
M. Larfors, A. Lukas, F. Ruehle and R. Schneider, Numerical metrics for complete intersection and Kreuzer–Skarke Calabi–Yau manifolds, Mach. Learn. Sci. Tech. 3 (2022) 035014 [arXiv:2205.13408] [INSPIRE].
M. Gerdes and S. Krippendorf, CYJAX: A package for Calabi-Yau metrics with JAX, Mach. Learn. Sci. Tech. 4 (2023) 025031 [arXiv:2211.12520] [INSPIRE].
P. Berglund et al., Machine Learned Calabi-Yau Metrics and Curvature, arXiv:2211.09801 [INSPIRE].
V. Braun, T. Brelidze, M.R. Douglas and B.A. Ovrut, Eigenvalues and Eigenfunctions of the Scalar Laplace Operator on Calabi-Yau Manifolds, JHEP 07 (2008) 120 [arXiv:0805.3689] [INSPIRE].
A. Ashmore, Eigenvalues and eigenforms on Calabi-Yau threefolds, arXiv:2011.13929 [INSPIRE].
A. Ashmore and F. Ruehle, Moduli-dependent KK towers and the swampland distance conjecture on the quintic Calabi-Yau manifold, Phys. Rev. D 103 (2021) 106028 [arXiv:2103.07472] [INSPIRE].
N. Afkhami-Jeddi, A. Ashmore and C. Cordova, Calabi-Yau CFTs and random matrices, JHEP 02 (2022) 021 [arXiv:2107.11461] [INSPIRE].
H. Ahmed and F. Ruehle, Level crossings, attractor points and complex multiplication, JHEP 06 (2023) 164 [arXiv:2304.00027] [INSPIRE].
A. Strominger and E. Witten, New Manifolds for Superstring Compactification, Commun. Math. Phys. 101 (1985) 341 [INSPIRE].
A. Strominger, Yukawa Couplings in Superstring Compactification, Phys. Rev. Lett. 55 (1985) 2547 [INSPIRE].
W.R. Inc., Mathematica, version 13.2, https://www.wolfram.com/mathematica.
L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Line Bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].
S. Groot Nibbelink, O. Loukas and F. Ruehle, (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories, Fortsch. Phys. 63 (2015) 609 [arXiv:1507.07559] [INSPIRE].
S. Groot Nibbelink, O. Loukas, F. Ruehle and P.K.S. Vaudrevange, Infinite number of MSSMs from heterotic line bundles?, Phys. Rev. D 92 (2015) 046002 [arXiv:1506.00879] [INSPIRE].
S. Groot Nibbelink and F. Ruehle, Line bundle embeddings for heterotic theories, JHEP 04 (2016) 186 [arXiv:1601.00676] [INSPIRE].
A.P. Braun, C.R. Brodie and A. Lukas, Heterotic Line Bundle Models on Elliptically Fibered Calabi-Yau Three-folds, JHEP 04 (2018) 087 [arXiv:1706.07688] [INSPIRE].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A Standard model from the E(8) x E(8) heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [INSPIRE].
V. Braun, P. Candelas, R. Davies and R. Donagi, The MSSM Spectrum from (0,2)-Deformations of the Heterotic Standard Embedding, JHEP 05 (2012) 127 [arXiv:1112.1097] [INSPIRE].
M. Blaszczyk et al., Heterotic MSSM on a Resolved Orbifold, JHEP 09 (2010) 065 [arXiv:1007.0203] [INSPIRE].
B. Andreas, G. Curio and A. Klemm, Towards the Standard Model spectrum from elliptic Calabi-Yau, Int. J. Mod. Phys. A 19 (2004) 1987 [hep-th/9903052] [INSPIRE].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology, and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 525 [hep-th/0505041] [INSPIRE].
V. Braun, Y.-H. He and B.A. Ovrut, Stability of the minimal heterotic standard model bundle, JHEP 06 (2006) 032 [hep-th/0602073] [INSPIRE].
Z. Marshall, B.A. Ovrut, A. Purves and S. Spinner, Spontaneous R-Parity Breaking, Stop LSP Decays and the Neutrino Mass Hierarchy, Phys. Lett. B 732 (2014) 325 [arXiv:1401.7989] [INSPIRE].
Z. Marshall, B.A. Ovrut, A. Purves and S. Spinner, LSP Squark Decays at the LHC and the Neutrino Mass Hierarchy, Phys. Rev. D 90 (2014) 015034 [arXiv:1402.5434] [INSPIRE].
B.A. Ovrut, A. Purves and S. Spinner, A statistical analysis of the minimal SUSY B–L theory, Mod. Phys. Lett. A 30 (2015) 1550085 [arXiv:1412.6103] [INSPIRE].
B.A. Ovrut, A. Purves and S. Spinner, The minimal SUSY B L model: from the unification scale to the LHC, JHEP 06 (2015) 182 [arXiv:1503.01473] [INSPIRE].
R. Deen, B.A. Ovrut and A. Purves, The minimal SUSY B L model: simultaneous Wilson lines and string thresholds, JHEP 07 (2016) 043 [arXiv:1604.08588] [INSPIRE].
B.A. Ovrut, Vacuum Constraints for Realistic Strongly Coupled Heterotic M-Theories, Symmetry 10 (2018) 723 [arXiv:1811.08892] [INSPIRE].
S. Dumitru, B.A. Ovrut and A. Purves, The R-parity Violating Decays of Charginos and Neutralinos in the B-L MSSM, JHEP 02 (2019) 124 [arXiv:1810.11035] [INSPIRE].
S. Dumitru, B.A. Ovrut and A. Purves, R-parity Violating Decays of Wino Chargino and Wino Neutralino LSPs and NLSPs at the LHC, JHEP 06 (2019) 100 [arXiv:1811.05581] [INSPIRE].
S. Dumitru, C. Herwig and B.A. Ovrut, R-parity Violating Decays of Bino Neutralino LSPs at the LHC, JHEP 12 (2019) 042 [arXiv:1906.03174] [INSPIRE].
A. Ashmore, S. Dumitru and B.A. Ovrut, Line Bundle Hidden Sectors for Strongly Coupled Heterotic Standard Models, Fortsch. Phys. 69 (2021) 2100052 [arXiv:2003.05455] [INSPIRE].
A. Ashmore, S. Dumitru and B.A. Ovrut, Explicit soft supersymmetry breaking in the heterotic M-theory B − L MSSM, JHEP 08 (2021) 033 [arXiv:2012.11029] [INSPIRE].
A. Ashmore, S. Dumitru and B.A. Ovrut, Hidden Sectors from Multiple Line Bundles for the B−LB − L MSSM, Fortsch. Phys. 70 (2022) 2200071 [arXiv:2106.09087] [INSPIRE].
S. Dumitru and B.A. Ovrut, Heterotic M-Theory Hidden Sectors with an Anomalous U (1) Gauge Symmetry, arXiv:2109.13781 [INSPIRE].
S. Dumitru and B.A. Ovrut, Moduli and Hidden Matter in Heterotic M-Theory with an Anomalous U (1) Hidden Sector, arXiv:2201.01624 [INSPIRE].
S. Dumitru and B.A. Ovrut, FIMP dark matter in heterotic M-theory, JHEP 09 (2022) 068 [arXiv:2204.13174] [INSPIRE].
E. Witten, World sheet corrections via D instantons, JHEP 02 (2000) 030 [hep-th/9907041] [INSPIRE].
E.I. Buchbinder, R. Donagi and B.A. Ovrut, Superpotentials for vector bundle moduli, Nucl. Phys. B 653 (2003) 400 [hep-th/0205190] [INSPIRE].
C. Beasley and E. Witten, Residues and world sheet instantons, JHEP 10 (2003) 065 [hep-th/0304115] [INSPIRE].
A. Basu and S. Sethi, World sheet stability of (0,2) linear sigma models, Phys. Rev. D 68 (2003) 025003 [hep-th/0303066] [INSPIRE].
V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, part A: Direct computation, JHEP 10 (2007) 022 [hep-th/0703182] [INSPIRE].
V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons, torsion curves, and non-perturbative superpotentials, Phys. Lett. B 649 (2007) 334 [hep-th/0703134] [INSPIRE].
V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet Instantons and Torsion Curves, Part B: Mirror Symmetry, JHEP 10 (2007) 023 [arXiv:0704.0449] [INSPIRE].
M. Bertolini and M.R. Plesser, Worldsheet instantons and (0,2) linear models, JHEP 08 (2015) 081 [arXiv:1410.4541] [INSPIRE].
E.I. Buchbinder and B.A. Ovrut, Non-vanishing Superpotentials in Heterotic String Theory and Discrete Torsion, JHEP 01 (2017) 038 [arXiv:1611.01922] [INSPIRE].
E.I. Buchbinder, A. Lukas, B.A. Ovrut and F. Ruehle, Instantons and Hilbert Functions, Phys. Rev. D 102 (2020) 026019 [arXiv:1912.08358] [INSPIRE].
E.I. Buchbinder, A. Lukas, B.A. Ovrut and F. Ruehle, Heterotic Instantons for Monad and Extension Bundles, JHEP 02 (2020) 081 [arXiv:1912.07222] [INSPIRE].
E. Buchbinder, A. Lukas, B. Ovrut and F. Ruehle, Heterotic Instanton Superpotentials from Complete Intersection Calabi-Yau Manifolds, JHEP 10 (2017) 032 [arXiv:1707.07214] [INSPIRE].
E.I. Buchbinder, L. Lin and B.A. Ovrut, Non-vanishing Heterotic Superpotentials on Elliptic Fibrations, JHEP 09 (2018) 111 [arXiv:1806.04669] [INSPIRE].
E.I. Buchbinder, R. Donagi and B.A. Ovrut, Vector bundle moduli superpotentials in heterotic superstrings and M theory, JHEP 07 (2002) 066 [hep-th/0206203] [INSPIRE].
L.B. Anderson et al., Instanton superpotentials, Calabi-Yau geometry, and fibrations, Phys. Rev. D 93 (2016) 086001 [arXiv:1511.05188] [INSPIRE].
K. Becker and L.-S. Tseng, Heterotic flux compactifications and their moduli, Nucl. Phys. B 741 (2006) 162 [hep-th/0509131] [INSPIRE].
M. Becker, L.-S. Tseng and S.-T. Yau, Moduli Space of Torsional Manifolds, Nucl. Phys. B 786 (2007) 119 [hep-th/0612290] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].
I.V. Melnikov and E. Sharpe, On marginal deformations of (0,2) non-linear sigma models, Phys. Lett. B 705 (2011) 529 [arXiv:1110.1886] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi-Yau Vacua, Phys. Rev. D 83 (2011) 106011 [arXiv:1102.0011] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].
L.B. Anderson, J. Gray and E. Sharpe, Algebroids, Heterotic Moduli Spaces and the Strominger System, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Vacuum Varieties, Holomorphic Bundles and Complex Structure Stabilization in Heterotic Theories, JHEP 07 (2013) 017 [arXiv:1304.2704] [INSPIRE].
X. de la Ossa and E.E. Svanes, Holomorphic Bundles and the Moduli Space of N=1 Supersymmetric Heterotic Compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].
X. de la Ossa, E. Hardy and E.E. Svanes, The Heterotic Superpotential and Moduli, JHEP 01 (2016) 049 [arXiv:1509.08724] [INSPIRE].
M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, Math. Ann. 369 (2017) 539 [arXiv:1503.07562] [INSPIRE].
P. Candelas, X. de la Ossa and J. McOrist, A Metric for Heterotic Moduli, Commun. Math. Phys. 356 (2017) 567 [arXiv:1605.05256] [INSPIRE].
A. Ashmore et al., Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L∞ algebra, JHEP 10 (2018) 179 [arXiv:1806.08367] [INSPIRE].
Ş. Blesneag et al., Matter field Kähler metric in heterotic string theory from localisation, JHEP 04 (2018) 139 [arXiv:1801.09645] [INSPIRE].
A. Ashmore, C. Strickland-Constable, D. Tennyson and D. Waldram, Heterotic backgrounds via generalised geometry: moment maps and moduli, JHEP 11 (2020) 071 [arXiv:1912.09981] [INSPIRE].
R. Kuwabara, Spectrum of the Schrödinger operator on a line bundle over complex projective spaces, Tohoku Math. J. 40 (1988) 199.
D. Bykov and A. Smilga, Monopole harmonics on ℂℙn−1, arXiv:2302.11691 [INSPIRE].
C.T. Prieto, Holomorphic spectral geometry of magnetic Schrödinger operators on Riemann surfaces, Differ. Geom. Appl. 24 (2006) 288.
P. Candelas, Yukawa Couplings Between (2,1) Forms, Nucl. Phys. B 298 (1988) 458 [INSPIRE].
P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].
M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 1: introduction, Cambridge Monographs on Mathematical Physics (1988) [INSPIRE].
M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Vol. 2: loop amplitudes, anomalies and phenomenology, Cambridge Monographs on Mathematical Physics (1988) [INSPIRE].
J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A. (1992) [INSPIRE].
S.K. Donaldson, Anti self-dual yang-mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1 [INSPIRE].
K. Uhlenbeck and S.T. Yau, On the existence of hermitian-yang-mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.
S. Bochner, Curvature and Betti Numbers, Annals Math. 49 (1948) 379.
K. Kodaira, On a Differential-Geometric Method in the Theory of Analytic Stacks, Proceedings of the National Academy of Sciences 39 (1953) 1268.
S. Nakano, On complex analytic vector bundles., J. Math. Soc. Japan 7 (1955) 1.
J.-P. Demailly, Sur l’identite de Bochner-Kodaira-Nakano en geometrie hermitienne, in P. Lelong, P. Dolbeault and H. Skoda eds., Séminaire d’Analyse, Lect. Notes Math. 1198 (1986) 88.
D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
A. Ikeda and Y. Taniguchi, Spectra and eigenforms of the Laplacian on Sn and Pn(C), Osaka J. Math. 15 (1978) 515.
P. Bérard and B. Helffer, Courant-Sharp Eigenvalues for the Equilateral Torus, and for the Equilateral Triangle, Lett. Math. Phys. 106 (2016) 1729.
J. Milnor, Eigenvalues of the laplace operator on certain manifolds, Proceedings of the National Academy of Sciences 51 (1964) 542.
C.-Y. Kao, R. Lai and B. Osting, Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces, arXiv:1405.4944 [https://doi.org/10.1051/cocv/2016008].
G. Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Diff. Geom. 32 (1990) 99.
M. Larfors and R. Schneider, Line bundle cohomologies on CICYs with Picard number two, Fortsch. Phys. 67 (2019) 1900083 [arXiv:1906.00392] [INSPIRE].
H. Otsuka, SO(32) heterotic line bundle models, JHEP 05 (2018) 045 [arXiv:1801.03684] [INSPIRE].
H. Otsuka and K. Takemoto, SO(32) heterotic standard model vacua in general Calabi-Yau compactifications, JHEP 11 (2018) 034 [arXiv:1809.00838] [INSPIRE].
S. Blesneag, Holomorphic Yukawa Couplings in Heterotic String Theory, Ph.D. thesis, Oxford University (2021) [arXiv:2204.01165] [INSPIRE].
A. Tomasiello, Geometry of String Theory Compactifications, Cambridge University Press (2022) [https://doi.org/10.1017/9781108635745] [INSPIRE].
Acknowledgments
It is a pleasure to thank Clay Córdova and Edward Mazenc for useful discussions. AA is supported in part by NSF Grant No. PHY2014195 and in part by the Kadanoff Center for Theoretical Physics. AA also acknowledges the support of the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 838776. YHH would like to thank STFC for grant ST/J00037X/2. EH would like to thank SMCSE at City, University of London for the PhD studentship, as well as the Jersey Government for a postgraduate grant. BAO is supported in part by both the research grant DOE No.DESC0007901 and SAS Account 020-0188-2-010202-6603-0338. This work was completed in part with resources provided by the University of Chicago Research Computing Center.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2305.08901
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ashmore, A., He, YH., Heyes, E. et al. Numerical spectra of the Laplacian for line bundles on Calabi-Yau hypersurfaces. J. High Energ. Phys. 2023, 164 (2023). https://doi.org/10.1007/JHEP07(2023)164
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2023)164
Keywords
- Differential and Algebraic Geometry
- Superstring Vacua
- Superstrings and Heterotic Strings