J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Drukker, D. J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
E. Brézin, C. Itzykson, G. Parisi and J. B. Zuber, Planar Diagrams, Commun. Math. Phys. 59 (1978) 35 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
C. Itzykson and J. B. Zuber, The Planar Approximation. 2., J. Math. Phys. 21 (1980) 411 [INSPIRE].
N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Yamaguchi, Bubbling geometries for half BPS Wilson lines, Int. J. Mod. Phys. A 22 (2007) 1353 [hep-th/0601089] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006) 037 [hep-th/0603208] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074 [hep-th/0604007] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Gomis and F. Passerini, Wilson Loops as D3-branes, JHEP 01 (2007) 097 [hep-th/0612022] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 superYang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].
ADS
MATH
Article
Google Scholar
N. Drukker, D. J. Gross and A. A. Tseytlin, Green-Schwarz string in AdS5 × S5: Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].
ADS
MATH
Article
Google Scholar
G. W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl. Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Faraggi and L. A. Pando Zayas, The Spectrum of Excitations of Holographic Wilson Loops, JHEP 05 (2011) 018 [arXiv:1101.5145] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A. Faraggi, W. Mueck and L. A. Pando Zayas, One-loop Effective Action of the Holographic Antisymmetric Wilson Loop, Phys. Rev. D 85 (2012) 106015 [arXiv:1112.5028] [INSPIRE].
ADS
Article
Google Scholar
C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS5 × S5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].
ADS
MATH
Article
Google Scholar
A. Faraggi, J. T. Liu, L. A. Pando Zayas and G. Zhang, One-loop structure of higher rank Wilson loops in AdS/CFT, Phys. Lett. B 740 (2015) 218 [arXiv:1409.3187] [INSPIRE].
ADS
MATH
Article
Google Scholar
A. Faraggi, L. A. Pando Zayas, G. A. Silva and D. Trancanelli, Toward precision holography with supersymmetric Wilson loops, JHEP 04 (2016) 053 [arXiv:1601.04708] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Horikoshi and K. Okuyama, α′-expansion of Anti-Symmetric Wilson Loops in \( \mathcal{N} \) = 4 SYM from Fermi Gas, PTEP 2016 (2016) 113B05 [arXiv:1607.01498] [INSPIRE].
V. Forini, A. A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS5 × S5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].
ADS
MATH
Article
Google Scholar
J. Aguilera-Damia, A. Faraggi, L. A. Pando Zayas, V. Rathee and G. A. Silva, Zeta-function Regularization of Holographic Wilson Loops, Phys. Rev. D 98 (2018) 046011 [arXiv:1802.03016] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
MathSciNet
MATH
Article
Google Scholar
K. Zarembo, Localization and AdS/CFT Correspondence, J. Phys. A 50 (2017) 443011 [arXiv:1608.02963] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J. K. Erickson, G. W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
N. Drukker and D. J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
G. Akemann and P. H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory from random matrix theory, Phys. Lett. B 513 (2001) 179 [Erratum ibid. 524 (2002) 400] [hep-th/0101225] [INSPIRE].
S. A. Hartnoll and S. P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08 (2006) 026 [hep-th/0605027] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Fiol and G. Torrents, Exact results for Wilson loops in arbitrary representations, JHEP 01 (2014) 020 [arXiv:1311.2058] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
J. Ambjørn, L. Chekhov, C. F. Kristjansen and Y. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys. B 404 (1993) 127 [Erratum ibid. 449 (1995) 681] [hep-th/9302014] [INSPIRE].
K. Okuyama and G. W. Semenoff, Wilson loops in N = 4 SYM and fermion droplets, JHEP 06 (2006) 057 [hep-th/0604209] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
X. Chen-Lin, Symmetric Wilson Loops beyond leading order, SciPost Phys. 1 (2016) 013 [arXiv:1610.02914] [INSPIRE].
ADS
Article
Google Scholar
J. Gordon, Antisymmetric Wilson loops in \( \mathcal{N} \) = 4 SYM beyond the planar limit, JHEP 01 (2018) 107 [arXiv:1708.05778] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
K. Okuyama, Phase Transition of Anti-Symmetric Wilson Loops in \( \mathcal{N} \) = 4 SYM, JHEP 12 (2017) 125 [arXiv:1709.04166] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
K. Okuyama, Connected correlator of 1/2 BPS Wilson loops in \( \mathcal{N} \) = 4 SYM, JHEP 10 (2018) 037 [arXiv:1808.10161] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Beccaria and A. Hasan, On topological recursion for Wilson loops in \( \mathcal{N} \) = 4 SYM at strong coupling, JHEP 04 (2021) 194 [arXiv:2102.12322] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
B. Fiol, J. Martínez-Montoya and A. Rios Fukelman, Wilson loops in terms of color invariants, JHEP 05 (2019) 202 [arXiv:1812.06890] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
A. F. Canazas Garay, A. Faraggi and W. Mück, Antisymmetric Wilson loops in \( \mathcal{N} \) = 4 SYM: from exact results to non-planar corrections, JHEP 08 (2018) 149 [arXiv:1807.04052] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. Beccaria and A. A. Tseytlin, On the structure of non-planar strong coupling corrections to correlators of BPS Wilson loops and chiral primary operators, JHEP 01 (2021) 149 [arXiv:2011.02885] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
S. Giombi and S. Komatsu, More Exact Results in the Wilson Loop Defect CFT: Bulk-Defect OPE, Nonplanar Corrections and Quantum Spectral Curve, J. Phys. A 52 (2019) 125401 [arXiv:1811.02369] [INSPIRE].
ADS
Article
Google Scholar
M. Mariño, Chern-Simons theory, matrix models, and topological strings, Int. Ser. Monogr. Phys. 131 (2005) 1 [INSPIRE].
MathSciNet
MATH
Google Scholar
A. F. Canazas Garay, A. Faraggi and W. Mück, Note on generating functions and connected correlators of 1/2-BPS Wilson loops in \( \mathcal{N} \) = 4 SYM theory, JHEP 08 (2019) 149 [arXiv:1906.03816] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
W. Mück, Combinatorics of Wilson loops in \( \mathcal{N} \) = 4 SYM theory, JHEP 11 (2019) 096 [arXiv:1908.11582] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
K. Okuyama, Spectral form factor and semi-circle law in the time direction, JHEP 02 (2019) 161 [arXiv:1811.09988] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 2nd edition (1995).
A. Lascoux, Symmetric functions, https://www.emis.de/journals/SLC/wpapers/s68vortrag/ALCoursSf2.pdf.
I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh and J.-Y. Thibon, Noncommutative symmetric functions, hep-th/9407124 [INSPIRE].
H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
M. L. Mehta, A Method of Integration Over Matrix Variables, Commun. Math. Phys. 79 (1981) 327 [INSPIRE].
ADS
MathSciNet
MATH
Article
Google Scholar
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York, 5th edition (1994).
MATH
Google Scholar
F. W. J. Olver eds., NIST Digital Library of Mathematical Functions, Release 1.0.22 of 2019-03-15 [http://dlmf.nist.gov/].
T. Agoh and K. Dilcher, Convolution Identities for Stirling Numbers of the First Kind, Integers 10 (2010) 101.
MathSciNet
MATH
Article
Google Scholar
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.0), (2020) [10.5281/zenodo.593563] [https://www.sagemath.org].
E. Rainville, Special Functions, Mac Millan, New York (1960).
MATH
Google Scholar
E. Rainville, The contiguous function relations for pFq with appliactions to Bateman’s \( {J}_n^{u,v} \) and Rice’s Hn(ζ, p, v), Bull. Am. Math. Soc. 51 (1945) 714.