Skip to main content

Non-supersymmetric Wilson loop in \( \mathcal{N} \) = 4 SYM and defect 1d CFT

A preprint version of the article is available at arXiv.

Abstract

Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in \( \mathcal{N} \) = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.

References

  1. [1]

    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. [3]

    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. [6]

    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CFT 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  7. [7]

    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    V.S. Dotsenko and S.N. Vergeles, Renormalizability of Phase Factors in the Nonabelian Gauge Theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    J.-L. Gervais and A. Neveu, The Slope of the Leading Regge Trajectory in Quantum Chromodynamics, Nucl. Phys. B 163 (1980) 189 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    I. Ya. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347.

  11. [11]

    H. Dorn, Renormalization of Path Ordered Phase Factors and Related Hadron Operators in Gauge Field Theories, Fortsch. Phys. 34 (1986) 11 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    R.M. Marinho and L. Boanerges Peixoto, Charge renormalization of the Yang-Mills theory up to fourth order using dimensional regularization, Nuovo Cim. A 97 (1987) 148 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    K. Zarembo, Localization and AdS/CFT Correspondence, J. Phys. A 50 (2017) 443011 [arXiv:1608.02963] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. [17]

    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-Theorem without Supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Generalized F -Theorem and the ϵ Expansion, JHEP 12 (2015) 155 [arXiv:1507.01960] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. [19]

    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP 03 (2015) 117 [arXiv:1409.1937] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    I. Affleck and A.W.W. Ludwig, Universal noninteger ’ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett. 67 (1991) 161 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett. 93 (2004) 030402 [hep-th/0312197] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    D. Young, Wavy Line Wilson Loops in the AdS/CFT Correspondence, MSc Thesis, British Columbia University, Vancouver U.S.A. (2003).

  25. [25]

    M.S. Bianchi, L. Griguolo, M. Leoni, A. Mauri, S. Penati and D. Seminara, The quantum 1/2 BPS Wilson loop in \( \mathcal{N} \) = 4 Chern-Simons-matter theories, JHEP 09 (2016) 009 [arXiv:1606.07058] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  26. [26]

    J.L. Cardy, Is There a c Theorem in Four-Dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    B. Jantzen, New proofs for the two Barnes lemmas and an additional lemma, J. Math. Phys. 54 (2013) 012304 [arXiv:1211.2637] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

  29. [29]

    W.N. Bailey, Generalized hypergeometric series, Cambridge University Press, Cambridge U.K. (1935).

    MATH  Google Scholar 

  30. [30]

    A.M. Polyakov and V.S. Rychkov, Gauge field strings duality and the loop equation, Nucl. Phys. B 581 (2000) 116 [hep-th/0002106] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    M. Sakaguchi and K. Yoshida, Holography of Non-relativistic String on AdS 5 × S 5, JHEP 02 (2008) 092 [arXiv:0712.4112] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. [34]

    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    J. Maldacena, private communication (2017).

  36. [36]

    M. Kim, N. Kiryu, S. Komatsu and T. Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 12 (2017) 055 [arXiv:1710.07325] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    M. Kim and N. Kiryu, Structure constants of operators on the Wilson loop from integrability, JHEP 11 (2017) 116 [arXiv:1706.02989] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. [39]

    N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : Semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  40. [40]

    E.I. Buchbinder and A.A. Tseytlin, 1/N correction in the D3-brane description of a circular Wilson loop at strong coupling, Phys. Rev. D 89 (2014) 126008 [arXiv:1404.4952] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    M. Kruczenski and A. Tirziu, Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling, JHEP 05 (2008) 064 [arXiv:0803.0315] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    J.L. Miramontes and J.M. Sanchez de Santos, Are there infrared problems in the 2 − d nonlinear σ-models?, Phys. Lett. B 246 (1990) 399 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, AdS Description of Induced Higher-Spin Gauge Theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    S. Giombi, C. Sleight and M. Taronna, Spinning AdS Loop Diagrams: Two Point Functions, arXiv:1708.08404 [INSPIRE].

  48. [48]

    S. Giombi, R. Ricci, R. Roiban and A.A. Tseytlin, Quantum dispersion relations for excitations of long folded spinning superstring in AdS 5 × S 5, JHEP 01 (2011) 128 [arXiv:1011.2755] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. [49]

    C. Kristjansen and Y. Makeenko, More about One-Loop Effective Action of Open Superstring in AdS 5 × S 5, JHEP 09 (2012) 053 [arXiv:1206.5660] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  50. [50]

    R. Bergamin and A.A. Tseytlin, Heat kernels on cone of AdS 2 and k-wound circular Wilson loop in AdS 5 × S 5 superstring, J. Phys. A 49 (2016) 14LT01 [arXiv:1510.06894] [INSPIRE].

  51. [51]

    V. Forini, A.A. Tseytlin and E. Vescovi, Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5 × S 5, JHEP 03 (2017) 003 [arXiv:1702.02164] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  52. [52]

    C.G. Callan Jr. and Z. Gan, Vertex Operators in Background Fields, Nucl. Phys. B 272 (1986) 647 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    A.A. Tseytlin, Conformal Anomaly in Two-Dimensional σ-model on Curved Background and Strings, Phys. Lett. B 178 (1986) 34 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    H.P. McKean and I.M. Singer, Curvature and eigenvalues of the Laplacian, J. Diff. Geom. 1 (1967) 43 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  55. [55]

    G. Kennedy, R. Critchley and J.S. Dowker, Finite Temperature Field Theory with Boundaries: Stress Tensor and Surface Action Renormalization, Annals Phys. 125 (1980) 346 [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    E.S. Fradkin and A.A. Tseytlin, On quantized string models, Annals Phys. 143 (1982) 413 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. [57]

    J.S. Dowker, The Hybrid spectral problem and Robin boundary conditions, J. Phys. A 38 (2005) 4735 [math/0409442] [INSPIRE].

  58. [58]

    M. Billò, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP 04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. [59]

    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    M.S. Bianchi, G. Giribet, M. Leoni and S. Penati, The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details, JHEP 10 (2013) 085 [arXiv:1307.0786] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  62. [62]

    L. Griguolo, G. Martelloni, M. Poggi and D. Seminara, Perturbative evaluation of circular 1/2 BPS Wilson loops in N = 6 Super Chern-Simons theories, JHEP 09 (2013) 157 [arXiv:1307.0787] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matteo Beccaria.

Additional information

ArXiv ePrint: 1712.06874

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beccaria, M., Giombi, S. & Tseytlin, A.A. Non-supersymmetric Wilson loop in \( \mathcal{N} \) = 4 SYM and defect 1d CFT. J. High Energ. Phys. 2018, 131 (2018). https://doi.org/10.1007/JHEP03(2018)131

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2018)131

Keywords

  • AdS-CFT Correspondence
  • Wilson
  • ’t Hooft and Polyakov loops
  • Supersymmetric Gauge Theory