Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Gauge-flavon unification
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Flavon alignments from orbifolding: SU(5) × SU(3) model with 𝕋6/∆(54)

06 December 2019

Francisco J. de Anda, Stephen F. King, … Patrick K. S. Vaudrevange

Symmetry enhancement and duality walls in 5d gauge theories

25 June 2020

Ivan Garozzo, Noppadol Mekareeya, … Gabi Zafrir

A tale of exceptional 3d dualities

21 March 2019

Sergio Benvenuti

Gauge symmetry breaking with fluxes and natural Standard Model structure from exceptional GUTs in F-theory

15 November 2022

Shing Yan Li & Washington Taylor

Mixed anomalies, two-groups, non-invertible symmetries, and 3d superconformal indices

20 January 2023

Noppadol Mekareeya & Matteo Sacchi

Duality walls in the 4d N $$ \mathcal{N} $$ = 2 SU(N) gauge theory with 2N flavours

11 November 2019

Ivan Garozzo, Noppadol Mekareeya & Matteo Sacchi

On the Nekrasov partition function of gauged Argyres-Douglas theories

09 January 2023

Takuya Kimura & Takahiro Nishinaka

Matching higher symmetries across Intriligator-Seiberg duality

14 October 2021

Yasunori Lee, Kantaro Ohmori & Yuji Tachikawa

Galilean gauge theories from null reductions

29 April 2022

Arjun Bagchi, Rudranil Basu, … Aditya Mehra

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 03 February 2020

Gauge-flavon unification

  • Alfredo Aranda1,2,
  • Francisco J. de Anda3 &
  • Stephen F. King4 

Journal of High Energy Physics volume 2020, Article number: 12 (2020) Cite this article

  • 249 Accesses

  • 2 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In this paper we propose the idea that flavons can emerge from extra dimensional gauge fields, referred to as gauge-flavon unification (GFU) analogous to gauge-Higgs unification (GHU). We assume that there is a gauged family symmetry in extra dimensions and that the flavons are the extra dimensional components of the gauge field. This provides a simple mechanism to align the VEVs of the flavons through a combination of Wilson lines and orbifold symmetry breaking. We present some simple 5d examples of GFU based on SO(3) and SU(4) gauged family symmetry, the latter case yielding SU(3) × U(1) gauged family symmetry in 4d, broken by triplet and antitriplet flavons, with effective couplings to fermions. We also present a general formalism for Wilson lines and orbifolds, in any number of dimensions, including non-commutative aspects Wilson lines, which may be useful for aligning additional flavons as required for realistic models.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    Article  ADS  Google Scholar 

  2. Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett. B 129 (1983) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  3. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, Symmetry breaking patterns in superstring models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. J.P. Derendinger, L.E. Ibáñez and H.P. Nilles, On the low-energy limit of superstring theories, Nucl. Phys. B 267 (1986) 365 [INSPIRE].

  6. B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].

  7. B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].

  8. S. Ferrara, C. Kounnas and M. Porrati, N = 1 superstrings with spontaneously broken symmetries, Phys. Lett. B 206 (1988) 25 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Font, L.E. Ibáñez, F. Quevedo and A. Sierra, The construction of ‘realistic’ four-dimensional strings through orbifolds, Nucl. Phys. B 331 (1990) 421 [INSPIRE].

  10. A.E. Faraggi, Proton stability in superstring derived models, Nucl. Phys. B 428 (1994) 111 [hep-ph/9403312] [INSPIRE].

  11. A.E. Faraggi, Local discrete symmetries from superstring derived models, Phys. Lett. B 398 (1997) 88 [hep-ph/9611219] [INSPIRE].

  12. J.R. Ellis, A.E. Faraggi and D.V. Nanopoulos, M theory model building and proton stability, Phys. Lett. B 419 (1998) 123 [hep-th/9709049] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. Y. Sakamura, Effective theories of gauge-Higgs unification models in warped spacetime, Phys. Rev. D 76 (2007) 065002 [arXiv:0705.1334] [INSPIRE].

  14. A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

  15. L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge Higgs unification in higher dimensions, Nucl. Phys. B 639 (2002) 307 [hep-ph/0107331] [INSPIRE].

  16. I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [INSPIRE].

  17. Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006 [hep-ph/0601241] [INSPIRE].

  18. C.A. Scrucca, M. Serone, L. Silvestrini and A. Wulzer, Gauge Higgs unification in orbifold models, JHEP 02 (2004) 049 [hep-th/0312267] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].

  20. G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].

  21. Y. Adachi and N. Maru, Revisiting electroweak symmetry breaking and the Higgs boson mass in gauge-Higgs unification, Phys. Rev. D 98 (2018) 015022 [arXiv:1804.06012] [INSPIRE].

  22. S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

  23. L.J. Hall, H. Murayama and Y. Nomura, Wilson lines and symmetry breaking on orbifolds, Nucl. Phys. B 645 (2002) 85 [hep-th/0107245] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. F.J. De Anda, S.F. King, E. Perdomo and P.K.S. Vaudrevange, Flavon alignments from orbifolding: SU(5) × SU(3) model with \( {\mathbbm{T}}^6 \)/∆(54), JHEP 12 (2019) 055 [arXiv:1910.04175] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Hebecker and M. Ratz, Group theoretical aspects of orbifold and conifold GUTs, Nucl. Phys. B 670 (2003) 3 [hep-ph/0306049] [INSPIRE].

  26. A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [INSPIRE].

  27. Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett. B 607 (2005) 276 [hep-ph/0410193] [INSPIRE].

  28. Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge symmetry breaking and mass generation on the orbifold T2/ℤ2, Phys. Rev. D 69 (2004) 125014 [hep-ph/0403106] [INSPIRE].

  29. N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Dynamical symmetry breaking in gauge Higgs unification on orbifold, Phys. Rev. D 70 (2004) 015010 [hep-ph/0401183] [INSPIRE].

  30. N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S1/Z2, Nucl. Phys. B 657 (2003) 169 [Erratum ibid. B 669 (2003) 381] [hep-ph/0212035] [INSPIRE].

  31. S. Förste, H.P. Nilles and A. Wingerter, Geometry of rank reduction, Phys. Rev. D 72 (2005) 026001 [hep-th/0504117] [INSPIRE].

  32. Z. Guralnik and J. Troost, Aspects of gauge theory on commutative and noncommutative tori, JHEP 05 (2001) 022 [hep-th/0103168] [INSPIRE].

    Article  ADS  Google Scholar 

  33. F.J. de Anda and S.F. King, SU(3) × SO(10) in 6d, JHEP 10 (2018) 128 [arXiv:1807.07078] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Saraikin, Comments on the Morita equivalence, J. Exp. Theor. Phys. 91 (2000) 653 [Zh. Eksp. Teor. Fiz. 118 (2000) 755] [hep-th/0005138] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Facultad de Ciencias-CUICBAS, Universidad de Colima, C.P. 28045, 01000, Colima, Mexico

    Alfredo Aranda

  2. Dual CP Institute of High Energy Physics, C.P. 28045, Colima, Mexico

    Alfredo Aranda

  3. Tepatitlán’s Institute for Theoretical Studies, C.P. 47600, Jalisco, Mexico

    Francisco J. de Anda

  4. School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, U.K.

    Stephen F. King

Authors
  1. Alfredo Aranda
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Francisco J. de Anda
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stephen F. King
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Francisco J. de Anda.

Additional information

ArXiv ePrint: 1911.11781

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aranda, A., de Anda, F.J. & King, S.F. Gauge-flavon unification. J. High Energ. Phys. 2020, 12 (2020). https://doi.org/10.1007/JHEP02(2020)012

Download citation

  • Received: 04 December 2019

  • Revised: 02 January 2020

  • Accepted: 14 January 2020

  • Published: 03 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)012

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Field Theories in Higher Dimensions
  • Quark Masses and SM Parameters
  • Beyond Standard Model
  • Gauge Symmetry
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.