Skip to main content

Likelihood analysis of the flavour anomalies and g – 2 in the general two Higgs doublet model

A preprint version of the article is available at arXiv.

Abstract

We present a likelihood analysis of the general two Higgs doublet model, using the most important currently measured flavour observables, in view of the anomalies in charged current tree-level and neutral current one-loop rare decays of B mesons in bcl\( \overline{\nu} \) and b+μ transitions, respectively. We corroborate that the model explains the latter and it is able to simultaneously fit the experimental values of the R(D) charged current ratio at 1σ, but it can not accommodate the D* charmed meson observables R(D*) and FL(D*). We find that the fitted values for the angular observables in b+μ transitions exhibit better agreement with the general two Higgs double model in comparison to the SM. We also make predictions for future collider observables BR(tch), BR(hbs), BR(hτμ), BR(Bsτ+τ), BR(B+K+τ+τ) and the flavour violating decays of the τ lepton, BR(τ → 3μ) and BR(τμγ). The model predicts values of BR(tch), BR(Bsτ+τ) and BR(B+K+τ+τ) that are out of reach of future experiments, but its predictions for BR(hbs) and BR(hτμ) are within the future sensitivity of the HL-LHC or the ILC. We also find that the predictions for the τ → 3μ and τμγ decays are well within the projected limits of the Belle II experiment. Finally, using the latest measurement of the Fermilab Muon g − 2 Collaboration, we performed a simultaneous fit to ∆aμ constrained by the charged anomalies, finding solutions at the 1σ level. Once the neutral anomalies are included, however, a simultaneous explanation is unfeasible.

References

  1. S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].

  2. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  3. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Article  Google Scholar 

  4. D. Croon, T.E. Gonzalo, L. Graf, N. Košnik and G. White, GUT physics in the era of the LHC, Front. Phys. 7 (2019) 76 [arXiv:1903.04977] [INSPIRE].

    Article  Google Scholar 

  5. M. Carena, M. Quirós, A. Riotto, I. Vilja and C.E.M. Wagner, Electroweak baryogenesis and low-energy supersymmetry, Nucl. Phys. B 503 (1997) 387 [hep-ph/9702409] [INSPIRE].

  6. J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [Erratum ibid. 448 (1999) 321] [hep-ph/9708393] [INSPIRE].

  7. T. Konstandin, T. Prokopec, M.G. Schmidt and M. Seco, MSSM electroweak baryogenesis and flavor mixing in transport equations, Nucl. Phys. B 738 (2006) 1 [hep-ph/0505103] [INSPIRE].

  8. V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE].

  9. W. Buchmüller, Baryogenesis, dark matter and the maximal temperature of the early universe, Acta Phys. Polon. B 43 (2012) [arXiv:1212.3554] [INSPIRE].

  10. D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].

    ADS  Article  Google Scholar 

  11. T. Konstandin, Quantum transport and electroweak baryogenesis, Phys. Usp. 56 (2013) 747 [Usp. Fiz. Nauk 183 (2013) 785] [arXiv:1302.6713] [INSPIRE].

  12. P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt and A. Wlotzka, Strong first order electroweak phase transition in the CP-conserving 2HDM revisited, JHEP 02 (2017) 121 [arXiv:1612.04086] [INSPIRE].

    ADS  Article  Google Scholar 

  13. K. Fuyuto, W.-S. Hou and E. Senaha, Electroweak baryogenesis driven by extra top Yukawa couplings, Phys. Lett. B 776 (2018) 402 [arXiv:1705.05034] [INSPIRE].

    ADS  Article  Google Scholar 

  14. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  15. S. Iguro and Y. Omura, Status of the semileptonic B decays and muon g − 2 in general 2HDMs with right-handed neutrinos, JHEP 05 (2018) 173 [arXiv:1802.01732] [INSPIRE].

    ADS  Article  Google Scholar 

  16. R. Martinez, C.F. Sierra and G. Valencia, Beyond \( \mathcal{R} \)(D(*)) with the general type-III 2HDM for bcτν, Phys. Rev. D 98 (2018) 115012 [arXiv:1805.04098] [INSPIRE].

  17. A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].

    ADS  Article  Google Scholar 

  18. L. Wang and X.-F. Han, A light pseudoscalar of 2HDM confronted with muon g − 2 and experimental constraints, JHEP 05 (2015) 039 [arXiv:1412.4874] [INSPIRE].

    ADS  Article  Google Scholar 

  19. T. Abe, R. Sato and K. Yagyu, Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly, JHEP 07 (2015) 064 [arXiv:1504.07059] [INSPIRE].

    ADS  Article  Google Scholar 

  20. E.J. Chun, Z. Kang, M. Takeuchi and Y.-L.S. Tsai, LHC τ-rich tests of lepton-specific 2HDM for (g − 2)μ, JHEP 11 (2015) 099 [arXiv:1507.08067] [INSPIRE].

    ADS  Article  Google Scholar 

  21. E.J. Chun, The muon g − 2 in two-Higgs-doublet models, EPJ Web Conf. 118 (2016) 01006 [Pramana 87 (2016) 41] [arXiv:1511.05225] [INSPIRE].

  22. E.J. Chun and J. Kim, Leptonic precision test of leptophilic two-Higgs-doublet model, JHEP 07 (2016) 110 [arXiv:1605.06298] [INSPIRE].

    ADS  Article  Google Scholar 

  23. L. Wang, J.M. Yang, M. Zhang and Y. Zhang, Revisiting lepton-specific 2HDM in light of muon g − 2 anomaly, Phys. Lett. B 788 (2019) 519 [arXiv:1809.05857] [INSPIRE].

    ADS  Article  Google Scholar 

  24. E.J. Chun, J. Kim and T. Mondal, Electron EDM and muon anomalous magnetic moment in two-Higgs-doublet models, JHEP 12 (2019) 068 [arXiv:1906.00612] [INSPIRE].

    ADS  Article  Google Scholar 

  25. E.J. Chun and T. Mondal, Searching for a light Higgs boson via the Yukawa process at lepton colliders, Phys. Lett. B 802 (2020) 135190 [arXiv:1909.09515] [INSPIRE].

    Article  Google Scholar 

  26. W.-Y. Keung, D. Marfatia and P.-Y. Tseng, Axion-like particles, two-Higgs-doublet models, leptoquarks, and the electron and muon g − 2, LHEP 2021 (2021) 209 [arXiv:2104.03341] [INSPIRE].

    ADS  Article  Google Scholar 

  27. P.M. Ferreira, B.L. Gonçalves, F.R. Joaquim and M. Sher, (g − 2)μ in the 2HDM and slightly beyond: an updated view, Phys. Rev. D 104 (2021) 053008 [arXiv:2104.03367] [INSPIRE].

  28. X.-F. Han, T. Li, H.-X. Wang, L. Wang and Y. Zhang, Lepton-specific inert two-Higgs-doublet model confronted with the new results for muon and electron g − 2 anomalies and multilepton searches at the LHC, Phys. Rev. D 104 (2021) 115001 [arXiv:2104.03227] [INSPIRE].

    ADS  Article  Google Scholar 

  29. J.C. Eung and T. Mondal, Leptophilic bosons and muon g − 2 at lepton colliders, JHEP 07 (2021) 044 [arXiv:2104.03701] [INSPIRE].

    Google Scholar 

  30. A. Jueid, J. Kim, S. Lee and J. Song, Type-X two-Higgs-doublet model in light of the muon g − 2: confronting Higgs boson and collider data, Phys. Rev. D 104 (2021) 095008 [arXiv:2104.10175] [INSPIRE].

  31. A. Dey, J. Lahiri and B. Mukhopadhyaya, Muon g − 2 and a type-X two Higgs doublet scenario: some studies in high-scale validity, arXiv:2106.01449 [INSPIRE].

  32. V. Ilisie, New Barr-Zee contributions to (g − 2)μ in two-Higgs-doublet models, JHEP 04 (2015) 077 [arXiv:1502.04199] [INSPIRE].

    ADS  Article  Google Scholar 

  33. T. Han, S.K. Kang and J. Sayre, Muon g − 2 in the aligned two Higgs doublet model, JHEP 02 (2016) 097 [arXiv:1511.05162] [INSPIRE].

    ADS  Article  Google Scholar 

  34. A. Cherchiglia, P. Kneschke, D. Stöckinger and H. Stöckinger-Kim, The muon magnetic moment in the 2HDM: complete two-loop result, JHEP 01 (2017) 007 [Erratum ibid. 10 (2021) 242] [arXiv:1607.06292] [INSPIRE].

  35. A. Cherchiglia, D. Stöckinger and H. Stöckinger-Kim, Muon g − 2 in the 2HDM: maximum results and detailed phenomenology, Phys. Rev. D 98 (2018) 035001 [arXiv:1711.11567] [INSPIRE].

  36. S.-P. Li, X.-Q. Li, Y.-Y. Li, Y.-D. Yang and X. Zhang, Power-aligned 2HDM: a correlative perspective on (g − 2)e,μ, JHEP 01 (2021) 034 [arXiv:2010.02799] [INSPIRE].

  37. P. Athron, C. Balázs, D.H. Jacob, W. Kotlarski, D. Stöckinger and H. Stöckinger-Kim, New physics explanations of aμ in light of the FNAL muon g − 2 measurement, JHEP 09 (2021) 080 [arXiv:2104.03691] [INSPIRE].

    ADS  Article  Google Scholar 

  38. Y. Omura, E. Senaha and K. Tobe, Lepton-flavor-violating Higgs decay hμτ and muon anomalous magnetic moment in a general two Higgs doublet model, JHEP 05 (2015) 028 [arXiv:1502.07824] [INSPIRE].

    ADS  Article  Google Scholar 

  39. A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].

  40. S. Iguro, Y. Omura and M. Takeuchi, Testing the 2HDM explanation of the muon g − 2 anomaly at the LHC, JHEP 11 (2019) 130 [arXiv:1907.09845] [INSPIRE].

    ADS  Article  Google Scholar 

  41. S. Jana, V.P.K. and S. Saad, Resolving electron and muon g − 2 within the 2HDM, Phys. Rev. D 101 (2020) 115037 [arXiv:2003.03386] [INSPIRE].

  42. N. Ghosh and J. Lahiri, Revisiting a generalized two-Higgs-doublet model in light of the muon anomaly and lepton flavor violating decays at the HL-LHC, Phys. Rev. D 103 (2021) 055009 [arXiv:2010.03590] [INSPIRE].

  43. W.-S. Hou, R. Jain, C. Kao, G. Kumar and T. Modak, Collider prospects for muon g − 2 in general two Higgs doublet model, Phys. Rev. D 104 (2021) 075036 [arXiv:2105.11315] [INSPIRE].

  44. W.-S. Hou and G. Kumar, Charged lepton flavor violation in light of muon g − 2, arXiv:2107.14114 [INSPIRE].

  45. O. Atkinson, M. Black, A. Lenz, A. Rusov and J. Wynne, Cornering the two Higgs doublet model type II, arXiv:2107.05650 [INSPIRE].

  46. W.-S. Hou, Decadal mission for the new physics Higgs/flavor era, arXiv:2109.02557 [INSPIRE].

  47. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

  48. M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, Significant gamma lines from inert Higgs dark matter, Phys. Rev. Lett. 99 (2007) 041301 [astro-ph/0703512] [INSPIRE].

  49. E.M. Dolle and S. Su, The inert dark matter, Phys. Rev. D 80 (2009) 055012 [arXiv:0906.1609] [INSPIRE].

  50. L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  51. L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].

    ADS  Google Scholar 

  52. W. Chao and M.J. Ramsey-Musolf, Hidden from view: neutrino masses, dark matter, and TeV-scale leptogenesis in a neutrinophilic two-Higgs-doublet model, Phys. Rev. D 89 (2014) 033007 [arXiv:1212.5709] [INSPIRE].

  53. A. Goudelis, B. Herrmann and O. Stål, Dark matter in the inert doublet model after the discovery of a higgs-like boson at the LHC, JHEP 09 (2013) 106 [arXiv:1303.3010] [INSPIRE].

    ADS  Article  Google Scholar 

  54. A. Arhrib, Y.-L.S. Tsai, Q. Yuan and T.-C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, Planck, AMS-02 and LHC, JCAP 06 (2014) 030 [arXiv:1310.0358] [INSPIRE].

    ADS  Article  Google Scholar 

  55. C. Bonilla, D. Sokolowska, N. Darvishi, J.L. Diaz-Cruz and M. Krawczyk, IDMS: inert dark matter model with a complex singlet, J. Phys. G 43 (2016) 065001 [arXiv:1412.8730] [INSPIRE].

  56. F.S. Queiroz and C.E. Yaguna, The CTA aims at the Inert Doublet Model, JCAP 02 (2016) 038 [arXiv:1511.05967] [INSPIRE].

    ADS  Article  Google Scholar 

  57. G. Arcadi, 2HDM portal for singlet-doublet dark matter, Eur. Phys. J. C 78 (2018) 864 [arXiv:1804.04930] [INSPIRE].

    ADS  Article  Google Scholar 

  58. Y.-L.S. Tsai, V.Q. Tran and C.-T. Lu, Confronting dark matter co-annihilation of inert two Higgs doublet model with a compressed mass spectrum, JHEP 06 (2020) 033 [arXiv:1912.08875] [INSPIRE].

    ADS  Article  Google Scholar 

  59. D.A. Camargo, M.D. Campos, T.B. de Melo and F.S. Queiroz, A two Higgs doublet model for dark matter and neutrino masses, Phys. Lett. B 795 (2019) 319 [arXiv:1901.05476] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  60. W.-S. Hou, Tree level tch or ht\( \overline{c} \) decays, Phys. Lett. B 296 (1992) 179 [INSPIRE].

  61. F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

  62. HFLAV collaboration, Averages of b-hadron, c-hadron and τ-lepton properties as of 2018, Eur. Phys. J. C 81 (2021) 226 [arXiv:1909.12524] [INSPIRE].

  63. M. Algueró, B. Capdevila, S. Descotes-Genon, J. Matias and M. Novoa-Brunet, bsℓℓ global fits after Moriond 2021 results, in 55th Rencontres de Moriond on QCD and high energy interactions, (2021) [arXiv:2104.08921] [INSPIRE].

  64. T. Hurth, F. Mahmoudi, D.M. Santos and S. Neshatpour, More indications for lepton nonuniversality in bsℓ+, Phys. Lett. B 824 (2022) 136838 [arXiv:2104.10058] [INSPIRE].

    Article  Google Scholar 

  65. J. Bhom, M. Chrzaszcz, F. Mahmoudi, M.T. Prim, P. Scott and M. White, A model-independent analysis of b+μ transitions with GAMBIT’s FlavBit, Eur. Phys. J. C 81 (2021) 1076 [arXiv:2006.03489] [INSPIRE].

    ADS  Article  Google Scholar 

  66. J.M. Cline, Scalar doublet models confront τ and b anomalies, Phys. Rev. D 93 (2016) 075017 [arXiv:1512.02210] [INSPIRE].

  67. J. Cardozo, J.H. Muñoz, N. Quintero and E. Rojas, Analysing the charged scalar boson contribution to the charged-current B meson anomalies, J. Phys. G 48 (2021) 035001 [arXiv:2006.07751] [INSPIRE].

  68. P. Arnan, D. Bečirević, F. Mescia and O. Sumensari, Two Higgs doublet models and bs exclusive decays, Eur. Phys. J. C 77 (2017) 796 [arXiv:1703.03426] [INSPIRE].

    ADS  Article  Google Scholar 

  69. A. Arhrib et al., \( {R}_{K^{\left(\ast \right)}} \) anomaly in type-III 2HDM, arXiv:1710.05898 [INSPIRE].

  70. A. Crivellin, D. Müller and C. Wiegand, bsℓ+ transitions in two-Higgs-doublet models, JHEP 06 (2019) 119 [arXiv:1903.10440] [INSPIRE].

  71. J. Herrero-Garcia, M. Nebot, F. Rajec, M. White and A.G. Williams, Higgs quark flavor violation: simplified models and status of general two-Higgs-doublet model, JHEP 02 (2020) 147 [arXiv:1907.05900] [INSPIRE].

    ADS  Article  Google Scholar 

  72. Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  73. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(\( {m}_Z^2 \)) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].

  75. A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(\( {M}_Z^2 \)): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].

  76. G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].

    ADS  Article  Google Scholar 

  77. M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].

    ADS  Article  Google Scholar 

  78. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(\( {m}_Z^2 \)), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

  79. A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(\( {M}_Z^2 \)), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].

  80. A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].

    ADS  Article  Google Scholar 

  81. K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].

  82. P. Masjuan and P. Sánchez-Puertas, Pseudoscalar-pole contribution to the (gμ 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].

  83. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  84. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].

    ADS  Article  Google Scholar 

  85. A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].

  86. J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].

    Article  Google Scholar 

  87. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].

    ADS  Article  Google Scholar 

  88. G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].

    ADS  Article  Google Scholar 

  89. T. Blum et al., Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].

    ADS  Article  Google Scholar 

  90. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete tenth-order QED contribution to the muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

    ADS  Article  Google Scholar 

  91. T. Aoyama, T. Kinoshita and M. Nio, Theory of the anomalous magnetic moment of the electron, Atoms 7 (2019) 28 [INSPIRE].

    ADS  Article  Google Scholar 

  92. A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  93. C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].

  94. GAMBIT collaboration, GAMBIT: the Global and Modular Beyond-the-standard-model Inference Tool, Eur. Phys. J. C 77 (2017) 784 [Addendum ibid. 78 (2018) 98] [arXiv:1705.07908] [INSPIRE].

  95. A. Kvellestad, P. Scott and M. White, GAMBIT and its application in the search for physics beyond the standard model, arXiv:1912.04079 [INSPIRE].

  96. GAMBIT collaboration, ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods, Eur. Phys. J. C 77 (2017) 795 [arXiv:1705.07919] [INSPIRE].

  97. GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].

  98. GAMBIT Flavour Workgroup collaboration, FlavBit: a GAMBIT module for computing flavour observables and likelihoods, Eur. Phys. J. C 77 (2017) 786 [arXiv:1705.07933] [INSPIRE].

  99. M. Chrzaszcz, M. Drewes, T.E. Gonzalo, J. Harz, S. Krishnamurthy and C. Weniger, A frequentist analysis of three right-handed neutrinos with GAMBIT, Eur. Phys. J. C 80 (2020) 569 [arXiv:1908.02302] [INSPIRE].

    ADS  Article  Google Scholar 

  100. GAMBIT Cosmology Workgroup collaboration, CosmoBit: a GAMBIT module for computing cosmological observables and likelihoods, JCAP 02 (2021) 022 [arXiv:2009.03286] [INSPIRE].

  101. GAMBIT collaboration, Global fits of GUT-scale SUSY models with GAMBIT, Eur. Phys. J. C 77 (2017) 824 [arXiv:1705.07935] [INSPIRE].

  102. GAMBIT collaboration, A global fit of the MSSM with GAMBIT, Eur. Phys. J. C 77 (2017) 879 [arXiv:1705.07917] [INSPIRE].

  103. GAMBIT collaboration, Combined collider constraints on neutralinos and charginos, Eur. Phys. J. C 79 (2019) 395 [arXiv:1809.02097] [INSPIRE].

  104. GAMBIT collaboration, Status of the scalar singlet dark matter model, Eur. Phys. J. C 77 (2017) 568 [arXiv:1705.07931] [INSPIRE].

  105. P. Athron, J.M. Cornell, F. Kahlhoefer, J. McKay, P. Scott and S. Wild, Impact of vacuum stability, perturbativity and XENON1T on global fits of Z2 and Z3 scalar singlet dark matter, Eur. Phys. J. C 78 (2018) 830 [arXiv:1806.11281] [INSPIRE].

    ADS  Article  Google Scholar 

  106. GAMBIT collaboration, Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38 [arXiv:1808.10465] [INSPIRE].

  107. S. Bloor et al., The GAMBIT universal model machine: from Lagrangians to likelihoods, Eur. Phys. J. C 81 (2021) 1103 [arXiv:2107.00030] [INSPIRE].

    ADS  Article  Google Scholar 

  108. GAMBIT collaboration, Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories, Eur. Phys. J. C 81 (2021) 992 [arXiv:2106.02056] [INSPIRE].

  109. S. Hoof, F. Kahlhoefer, P. Scott, C. Weniger and M. White, Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT, JHEP 03 (2019) 191 [Erratum ibid. 11 (2019) 099] [arXiv:1810.07192] [INSPIRE].

  110. P. Athron et al., Global fits of axion-like particles to XENON1T and astrophysical data, JHEP 05 (2021) 159 [arXiv:2007.05517] [INSPIRE].

    ADS  Article  Google Scholar 

  111. GAMBIT Cosmology Workgroup collaboration, Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments, Phys. Rev. D 103 (2021) 123508 [arXiv:2009.03287] [INSPIRE].

  112. F. Rajec, W. Su, M. White and A.G. Williams, Exploring the 2HDM with global fits in GAMBIT, EPJ Web Conf. 245 (2020) 06022 [arXiv:2007.11942] [INSPIRE].

  113. GAMBIT Models Workgroup collaboration, SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables, Eur. Phys. J. C 78 (2018) 22 [arXiv:1705.07936] [INSPIRE].

  114. F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK*γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  115. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

  116. F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718 [INSPIRE].

  117. S. Neshatpour and F. Mahmoudi, Flavour physics with SuperIso, PoS TOOLS2020 (2021) 036 [arXiv:2105.03428] [INSPIRE].

  118. D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  119. J. Bhom and M. Chrzaszcz, HEPLike: an open source framework for experimental likelihood evaluation, Comput. Phys. Commun. 254 (2020) 107235 [arXiv:2003.03956] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  120. GAMBIT collaboration, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].

  121. S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].

  122. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Article  Google Scholar 

  123. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  124. G.W.-S. Hou, Perspectives and outlook from HEP window on the universe, Int. J. Mod. Phys. A 34 (2019) 1930002 [arXiv:1901.04033] [INSPIRE].

    ADS  Article  Google Scholar 

  125. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

  126. J. Hernandez-Sanchez, S. Moretti, R. Noriega-Papaqui and A. Rosado, Off-diagonal terms in Yukawa textures of the type-III 2-Higgs doublet model and light charged Higgs boson phenomenology, JHEP 07 (2013) 044 [arXiv:1212.6818] [INSPIRE].

    ADS  Article  Google Scholar 

  127. A. Crivellin, A. Kokulu and C. Greub, Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure, Phys. Rev. D 87 (2013) 094031 [arXiv:1303.5877] [INSPIRE].

  128. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

  129. Gfitter Group collaboration, The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].

  130. B. Altunkaynak, W.-S. Hou, C. Kao, M. Kohda and B. McCoy, Flavor changing heavy Higgs interactions at the LHC, Phys. Lett. B 751 (2015) 135 [arXiv:1506.00651] [INSPIRE].

    ADS  Article  Google Scholar 

  131. W.-S. Hou and T. Modak, Probing top changing neutral Higgs couplings at colliders, Mod. Phys. Lett. A 36 (2021) 2130006 [arXiv:2012.05735] [INSPIRE].

    ADS  Article  Google Scholar 

  132. S. Iguro and K. Tobe, R(D(*)) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  133. C. Degrande, Automatic evaluation of UV and R2 terms for beyond the standard model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  134. V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

  135. H.H. Patel, Package-X: a mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  136. F. Mahmoudi and S. Neshatpour, SuperIso v4.1: a program for calculating flavour physics observables in SM, 2HDM and supersymmetry, http://superiso.in2p3.fr, (2020).

  137. A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, in Les Houches summer school in theoretical physics, session 68: probing the standard model of particle interactions, (1998), pg. 281 [hep-ph/9806471] [INSPIRE].

  138. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

  139. A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD(*)τντ and Bτντ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].

    ADS  Article  Google Scholar 

  140. A. Crivellin, C. Greub and A. Kokulu, Explaining BDτν, BD*τν and Bτν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

  141. R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of \( {B}_c^{-} \) constrains explanations for anomalies in BD(*)τν, Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].

  142. S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of BK*ll observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].

    ADS  Article  Google Scholar 

  143. W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub and M. Wick, Symmetries and asymmetries of BK*μ+μ decays in the standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

    ADS  Article  Google Scholar 

  144. A. Czarnecki and W.J. Marciano, Electroweak radiative corrections to b, Phys. Rev. Lett. 81 (1998) 277 [hep-ph/9804252] [INSPIRE].

  145. M. Misiak et al., Estimate of \( \mathcal{B} \)(\( \overline{B} \)Xsγ) at O(\( {\alpha}_s^2 \)), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

  146. M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \overline{B} \)Xsγ matrix elements using interpolation in mc, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].

  147. M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, The (Q7, Q1,2) contribution to \( \overline{B} \)Xsγ at \( \mathcal{O} \)(\( {\alpha}_s^2 \)), JHEP 04 (2015) 168 [arXiv:1503.01791] [INSPIRE].

  148. M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on \( {M}_{H^{\pm }} \) in the two-Higgs-doublet model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].

  149. M. Misiak, A. Rehman and M. Steinhauser, Towards \( \overline{B} \)Xsγ at the NNLO in QCD without interpolation in mc, JHEP 06 (2020) 175 [arXiv:2002.01548] [INSPIRE].

  150. LHCb collaboration, Test of lepton universality in beauty-quark decays, arXiv:2103.11769 [INSPIRE].

  151. LHCb collaboration, Measurement of the \( {B}_s^0 \)μ+μ decay properties and search for the B0μ+μ and \( {B}_s^0 \)μ+μγ decays, arXiv:2108.09283 [INSPIRE].

  152. LHCb collaboration, Test of lepton universality with B0K*0+ decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  153. LHCb collaboration, Combination of the ATLAS, CMS and LHCb results on the \( {B}_{(s)}^0 \)μ+μ. decays, Tech. Rep. LHCb-CONF-2020-002, CERN, Geneva, Switzerland (2020).

  154. Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  155. Belle collaboration, Search for B\( \overline{\nu} \) decays with semileptonic tagging at Belle, Phys. Rev. D 96 (2017) 091101 [Addendum ibid. 97 (2018) 099902] [arXiv:1702.03224] [INSPIRE].

  156. J. Bhom and M. Chrząszcz, HEPLikeData, https://github.com/mchrzasz/HEPLikeData, (2020).

  157. Belle collaboration, Measurement of the CKM matrix element |Vcb| from B0D*+ν at Belle, Phys. Rev. D 100 (2019) 052007 [Erratum ibid. 103 (2021) 079901] [arXiv:1809.03290] [INSPIRE].

  158. C. Murgui, A. Peñuelas, M. Jung and A. Pich, Global fit to bcτν transitions, JHEP 09 (2019) 103 [arXiv:1904.09311] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  159. M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B} \)D(*)τ\( \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

  160. M. Beneke and G. Buchalla, The Bc meson lifetime, Phys. Rev. D 53 (1996) 4991 [hep-ph/9601249] [INSPIRE].

  161. A.G. Akeroyd and C.-H. Chen, Constraint on the branching ratio of Bcτ\( \overline{\nu} \) from LEP1 and consequences for R(D(*)) anomaly, Phys. Rev. D 96 (2017) 075011 [arXiv:1708.04072] [INSPIRE].

  162. M. Blanke et al., Impact of polarization observables and Bcτν on new physics explanations of the bcτν anomaly, Phys. Rev. D 99 (2019) 075006 [arXiv:1811.09603] [INSPIRE].

  163. J. Aebischer and B. Grinstein, A novel determination of the Bc lifetime, arXiv:2108.10285 [INSPIRE].

  164. J. Aebischer and B. Grinstein, Standard model prediction of the Bc lifetime, arXiv:2105.02988 [INSPIRE].

  165. LHCb collaboration, Measurement of the ratio of branching fractions \( \mathcal{B} \)(\( {B}_c^{+} \)J/ψτ+ντ)/(\( {B}_c^{+} \)J/ψμ+νμ), Phys. Rev. Lett. 120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].

  166. Belle collaboration, Measurement of the D* polarization in the decay B0D*τ+ντ, in 10th International workshop on the CKM unitarity triangle, (2019) [arXiv:1903.03102] [INSPIRE].

  167. S. Bhattacharya, S. Nandi and S. Kumar Patra, bcτντ decays: a catalogue to compare, constrain, and correlate new physics effects, Eur. Phys. J. C 79 (2019) 268 [arXiv:1805.08222] [INSPIRE].

  168. BaBar collaboration, Measurement of an excess of \( \overline{B} \)D(*)τ\( \overline{\nu} \)τ decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  169. Fermilab Lattice and MILC collaborations, \( {B}_{(s)}^0 \)-mixing matrix elements from lattice QCD for the standard model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].

  170. D.M. Straub, flavio: a python package for flavour and precision phenomenology in the standard model and beyond, arXiv:1810.08132 [INSPIRE].

  171. M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  172. Heavy Flavor Averaging Group collaboration, Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].

  173. A.G. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from \( {D}_s^{\pm } \)μ±ν and \( {D}_s^{\pm } \)τ±ν, JHEP 04 (2009) 121 [arXiv:0902.2393] [INSPIRE].

  174. Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  175. Y. Omura, E. Senaha and K. Tobe, τ- and μ-physics in a general two Higgs doublet model with μ − τ flavor violation, Phys. Rev. D 94 (2016) 055019 [arXiv:1511.08880] [INSPIRE].

  176. W.-S. Hou and G. Kumar, Muon flavor violation in two Higgs doublet model with extra Yukawa couplings, Phys. Rev. D 102 (2020) 115017 [arXiv:2008.08469] [INSPIRE].

    ADS  Article  Google Scholar 

  177. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].

  178. CMS collaboration, Search for lepton-flavor violating decays of the Higgs boson in the μτ and eτ final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 104 (2021) 032013 [arXiv:2105.03007] [INSPIRE].

  179. S. Bifani, S. Descotes-Genon, A. Romero Vidal and M.-H. Schune, Review of lepton universality tests in B decays, J. Phys. G 46 (2019) 023001 [arXiv:1809.06229] [INSPIRE].

  180. S.S. AbdusSalam et al., Simple and statistically sound strategies for analysing physical theories, arXiv:2012.09874 [INSPIRE].

  181. P. Scott, Pippi — painless parsing, post-processing and plotting of posterior and likelihood samples, Eur. Phys. J. Plus 127 (2012) 138 [arXiv:1206.2245] [INSPIRE].

    Article  Google Scholar 

  182. A. Arbey, F. Mahmoudi, O. Stal and T. Stefaniak, Status of the charged Higgs boson in two Higgs doublet models, Eur. Phys. J. C 78 (2018) 182 [arXiv:1706.07414] [INSPIRE].

    ADS  Article  Google Scholar 

  183. A. Crivellin, J. Heeck and D. Müller, Large hbs in generic two-Higgs-doublet models, Phys. Rev. D 97 (2018) 035008 [arXiv:1710.04663] [INSPIRE].

  184. A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

  185. A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double neutral Higgs production in the two-Higgs doublet model at the LHC, JHEP 08 (2009) 035 [arXiv:0906.0387] [INSPIRE].

    ADS  Article  Google Scholar 

  186. CMS collaboration, Measurement of the P1 and \( {P}_5^{\prime } \) angular parameters of the decay B0K*0μ+μ in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Tech. Rep. CMS-PAS-BPH-15-008, CERN, Geneva, Switzerland (2017).

  187. ATLAS collaboration, Angular analysis of \( {B}_d^0 \)K*μ+μ decays in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 10 (2018) 047 [arXiv:1805.04000] [INSPIRE].

  188. LHCb collaboration, Measurement of CP-averaged observables in the B0K*0μ+μ decay, Phys. Rev. Lett. 125 (2020) 011802 [arXiv:2003.04831] [INSPIRE].

  189. LHCb collaboration, Measurements of the S-wave fraction in B0K+πμ+μ decays and the B0K*(892)0μ+μ differential branching fraction, JHEP 11 (2016) 047 [Erratum ibid. 04 (2017) 142] [arXiv:1606.04731] [INSPIRE].

  190. LHCb collaboration, Differential branching fraction and angular analysis of the B+K+μ+μ decay, JHEP 02 (2013) 105 [arXiv:1209.4284] [INSPIRE].

  191. LHCb collaboration, Differential branching fractions and isospin asymmetries of BK(*)μ+μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].

  192. LHCb collaboration, Differential branching fraction and angular analysis of \( {\Lambda}_b^0 \) → Λμ+μ decays, JHEP 06 (2015) 115 [Erratum ibid. 09 (2018) 145] [arXiv:1503.07138] [INSPIRE].

  193. W. Detmold and S. Meinel, Λb → Λ+ form factors, differential branching fraction, and angular observables from lattice QCD with relativistic b quarks, Phys. Rev. D 93 (2016) 074501 [arXiv:1602.01399] [INSPIRE].

  194. LHCb collaboration, Angular analysis and differential branching fraction of the decay \( {B}_s^0 \)ϕμ+μ, JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].

  195. LHCb collaboration, Branching fraction measurements of the rare \( {B}_s^0 \)ϕμ+μ and \( {B}_s^0 \)\( {f}_2^{\prime } \)(1525)μ+μ decays, Phys. Rev. Lett. 127 (2021) 151801 [arXiv:2105.14007] [INSPIRE].

  196. LHCb collaboration, Search for lepton-universality violation in B+K++ decays, Phys. Rev. Lett. 122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].

  197. Belle collaboration, Test of lepton-flavor universality in BK*+ decays at Belle, Phys. Rev. Lett. 126 (2021) 161801 [arXiv:1904.02440] [INSPIRE].

  198. BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in BKℓℓ decays, JHEP 03 (2021) 105 [arXiv:1908.01848] [INSPIRE].

  199. ATLAS collaboration, Search for top-quark decays tHq with 36 fb1 of pp collision data at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 05 (2019) 123 [arXiv:1812.11568] [INSPIRE].

  200. D. Barducci and A.J. Helmboldt, Quark flavour-violating Higgs decays at the ILC, JHEP 12 (2017) 105 [arXiv:1710.06657] [INSPIRE].

    ADS  Article  Google Scholar 

  201. Belle-II collaboration, The Belle II physics book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  202. W.-S. Hou and G. Kumar, Coming decade of hτμ and τμγ interplay in τ flavor violation search, Phys. Rev. D 101 (2020) 095017 [arXiv:2003.03827] [INSPIRE].

  203. LHCb collaboration, Physics case for an LHCb upgrade II — opportunities in flavour physics, and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].

  204. A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the momentum expansion, Nucl. Phys. B 397 (1993) 123 [INSPIRE].

    ADS  Article  Google Scholar 

  205. B. Capdevila, U. Laa and G. Valencia, Anatomy of a six-parameter fit to the bsℓ+ anomalies, Eur. Phys. J. C 79 (2019) 462 [arXiv:1811.10793] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristian Sierra.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2111.10464

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Athron, P., Balazs, C., Gonzalo, T.E. et al. Likelihood analysis of the flavour anomalies and g – 2 in the general two Higgs doublet model. J. High Energ. Phys. 2022, 37 (2022). https://doi.org/10.1007/JHEP01(2022)037

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2022)037

Keywords

  • Phenomenological Models