Skip to main content
Log in

EEG slow wave activity regulation in major depression

EEG-Slow-Wave-Aktivität bei Patienten mit Major Depression

  • Original Articles
  • Published:
Somnologie - Schlafforschung und Schlafmedizin Aims and scope Submit manuscript

Summary

Question of the study

Sleep disturbances, including reduced slow wave activity (SWA), are among the most consistently replicated biological alterations in major depression. According to the two-process model of sleep regulation, SWA is homoeostatically regulated as a function of prior waking time. This study aimed to further elucidate SWA regulation in major depression.

Methods

All-night spectral analysis was performed before and after therapeutic sleep deprivation in N=20 patients suffering from major depression. Recovery sleep was studied at 1700 h after 34 h of waking time (n=10) and at 0200 h after 43 h of waking time (n=10)

Results

A significantly lower increase of SWA from baseline to recovery sleep was observed after 43 h versus 34 h of waking time

Conclusion

The finding of a lower SWA increase after 43 h versus 34 h of waking time may indicate a circadian modulation of SWA and is in line with previous findings of studies investigating extended sleep durations or the relationships of SWA and circadian endocrine systems.

Zusammenfassung

Fragestellung

Schlafstörungen, einschließlich reduzierter EEG-Slow-Wave-Aktivität (SWA), gehören zu den am besten replizierten biologischen Auffälligkeiten depressiver Störungen. Gemäß dem Zwei-Prozess-Modell der Schlafregulation unterliegt die SWA einer homöostatischen Regulation in Abhängigkeit der vorangegangenen Wachzeit. Ziel der Studie was es, die Regulation der SWA bei Patienten mit Major Depression näher zu untersuchen.

Methoden

Eine Spektralanalyse des Schlaf-EEGs wurde bei N=20 depressive Patienten vor und nach therapeutischem Schlafentzug durchgeführt. Der Erholungsschlaf wurde zu zwei unterschiedlichen Zeitpunkten aufgezeichnet, um 17.00 Uhr nach 34-h-Wachzeit (n=10) und um 2.00 Uhr nach 43-h-Wachzeit (n=10).

Ergebnisse

Nach 43-h-Wachzeit wurde ein signifikant geringerer Anstieg der SWA gemessen als nach 34-h-Wachzeit.

Diskussion

Die Beobachtung eines geringeren SWA-Anstiegs nach längerer Wachzeit könnte auf eine zirkadiane Modulation der SWA hinweisen

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achermann P, Dijk DJ, Brunner DP, Borbely AA: A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 31: 97–113, 1993.

    Article  PubMed  CAS  Google Scholar 

  2. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. 4th ed., American Psychiatric Press, Washington DC, 1994.

    Google Scholar 

  3. Armitage R: Microarchitectural findings in sleep EEG in depression: diagnostic implications. Biol Psychiatry 37: 72–84, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Astrom C, Trojaborg W: Relationship of age to power spectrum analysis of EEG during sleep. J Clin Neurophysiol 9: 424–430, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Bech P, Gram LF, Dein E, Jacobsen O, Vitger J, Bolwig TG: Quantitative rating of depressive states. Acta Psychiatr Scand 51: 161–170, 1975.

    PubMed  CAS  Google Scholar 

  6. Benca RM, Obermeyer WH, Thisted RA, Gillin JC: Sleep and psychiatric disorders. A meta-analysis. Arch Gen Psychiatry 49: 651–668, 1992.

    PubMed  CAS  Google Scholar 

  7. Borbely AA: A two process model of sleep regulation. Hum Neurobiol 1: 195–204, 1982.

    PubMed  CAS  Google Scholar 

  8. Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED: Timing of REM sleep is coupled to the circadian dhythm of body temperature in man. Sleep 2: 329–346, 1980.

    PubMed  CAS  Google Scholar 

  9. de Koninck GC, Hebert M, Carrier J, Lamarche C, Dufour S: Body temperature and the return of slow wave activity in extended sleep. Electroencephalogr Clin Neurophysiol 98: 42–50, 1996.

    PubMed  Google Scholar 

  10. Dijk DJ, Brunner DP, Borbely AA: Time course of EEG power density during long sleep in humans. Am J Physiol 258: 650–661, 1990.

    Google Scholar 

  11. Dijk DJ, Brunner DP, Borbely AA: EEG power density during recovery sleep in the morning. Electroencephalogr Clin Neurophysiol 78: 203–214, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Dijk DJ, Cajochen C: Melatonin and the circadian regulation of sleep initiation, consolidation, structure, and the sleep EEG. J Biol Rhythms 12: 627–635, 1997.

    PubMed  CAS  Google Scholar 

  13. Dijk DJ, Czeisler CA: Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15: 3526–3538, 1995.

    PubMed  CAS  Google Scholar 

  14. Ehlers CL, Havstad JW, Kupfer DJ: Estimation of the time course of slow-wave sleep over the night in depressed patients: effects of clomipramine and clinical response. Biol Psychiatry 39: 171–181, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Ehlers CL, Kupfer DJ: Slow-wave sleep: do young adult men and women age differently? J Sleep Res 6: 211–215, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Feige B: Oscillarory brain activity and its analysis ofn the basis of EEG and MEG. Waxmann, Münster, 1999.

    Google Scholar 

  17. Feige B, Voderholzer U, Riemann D, Hohagen F, Berger M: Independent sleep EEG slow-wave and spindle band dynamics associated with 4 weeks of continuous application of short-half-life hypnotics in healthy subjects. Clin Neurophysiol 110: 1965–1974, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Friess E, Wiedemann K, Steiger A, Holsboer F: The hypothalamic-pituitary-adrenocortical system and sleep in man. Adv Neuroimmunol 5: 111–125, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Gronfier C, Luthringer R, Follenius M, Schltenbrand N, Macher JP, Muzet A, et al.: A quantitative evaluation of the relationships between growth hormone secretion and delta wave electroencephalographic activity during normal sleep and after enrichment in delta waves. Sleep 19: 817–824, 1996.

    PubMed  CAS  Google Scholar 

  20. Holsboer F: Neuroendocrinology of mood disorders. In: Bloom FE, Kupfer DJ (eds): Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York, pp. 957–969, 1995.

    Google Scholar 

  21. Home JA: Tissue restitution and sleep, with particular reference to human slow wave sleep. In: Inoué S, Borbely AA (Eds): Endogenous Sleep Substances and Sleep Regulation. Jpn. Sci. Soc. Press, Tokyo, pp 25–40, 1985.

    Google Scholar 

  22. Kupfer DJ, Frank E, McEachran AB, Grochocinski VJ: Delta sleep ratio. A biological correlate of early recurrence in unipolar affective disorder. Arch Gen Psychiatry 47: 1100–1105, 1990.

    PubMed  CAS  Google Scholar 

  23. Kupfer DJ, Reynolds CF III, Ulrich RF, Grochocinski VJ: Comparison of automated REM and slow-wave sleep analysis in young and middle-aged depressed subjects. Biol Psychiatry 21: 189–200, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Kupfer DJ, Ulrich RF, Coble PA, Jarrett DB, Grochocinski V, Doman J, et al.: Application of automated REM and slow wave sleep analysis: I. Normal and depressed subjects. Psychiatry Res 13: 325–334, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Landolt HP, Dijk DJ, Achemann P, Borbely AA: Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res 738: 205–212, 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Nissen C, Feige B, Konig A, Voderholzer U, Berger M, Riemann D: Delta sleep ratio as a predictor of sleep deprivation response in major depression. J Psychiatr Res 35: 155–163, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Nissen C, Feige B, Voderholzer U, Berger M, riemann D: Gender-dependent age effects on sleep EEG power density in major depression. Somnology 6: 7–12, 2002.

    Article  Google Scholar 

  28. Obal F Jr, Floyd R, Kapas L, Bodosi B, Krueger JM: Effects of systemic GHRH on sleep in intact and hypophysectomized rats. Am J Physiol 270: E230-E237, 1996.

    PubMed  CAS  Google Scholar 

  29. Putilov AA: The timing of sleep modeling: circadian modulation of the homeostatic process. Biol Rhythm Res 26: 1–19, 1995.

    Article  Google Scholar 

  30. Rechtschaffen A, Kales A: A manual of standardized teminology, techniques and scoring system for sleep stages of human subjects, US Government Printing Office, Washington DC, 1968.

    Google Scholar 

  31. Riemann D, Konig A, Hohagen F, Kiemen A, Voderholzer U, Backhaus J, et al.: How to preserve the antidepressive effect of sleep deprivation: a comparison of sleep phase advance and sleep phase delay. Eur Arch Psychiatry Clin Neurosci 249: 231–237, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Seifritz E, Mueller MJ, Trachsel L, Lauer CJ, Hemmeter U, Hatzinger, M, et al.: Revisiting the Ehlers and Kupfer hypothesis: the growth hormone cortisol secretion ratio during sleep is correlated with electroencephalographic slow wave activity in normal volunteers. Biol Psychiatry 39: 139–142, 1996.

    Article  PubMed  CAS  Google Scholar 

  33. Steiger A, Antonijevic IA, Bohlhalter S, Frieboes RM, Friess E, Murck H: Effects of hormones on sleep, Horm Res 49: 125–130, 1998.

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi JS, Zatz M: Regulation of circadian rhythmicity. Science 217: 1104–1111, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Thase ME, Fasiczka AL, Berman SR, Simons AD, Reynolds CF III: Electroencephalographic sleep profiles before and after cognitive behavior therapy of depression. Arch Gen Psychiatry 55: 138–144, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Van den Pol AN, Dudek FE: Cellular communication in the circadian clock, the suprachiasmatic nucleus. Neuroscience 56: 793–811, 1993.

    Article  PubMed  Google Scholar 

  37. Webb WB: Enhanced slow sleep in extended sleep. Electroencephalogr Clin Neurophysiol 64: 27–30, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Nissen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissen, C., Feige, B., Nofzinger, E.A. et al. EEG slow wave activity regulation in major depression. Somnologie 10, 36–42 (2006). https://doi.org/10.1007/j.1439-054X.2006.00083.x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/j.1439-054X.2006.00083.x

Keywords

Schlüsselwörter

Navigation