Skip to main content

Advertisement

Log in

Rheumatoid pannus formation: synovial cell attachment to the surface of cartilage

  • Review
  • Published:
Japanese Journal of Rheumatology

Abstract

As a part of the rheumatoid synovial tissue reaction, proliferating synovial cells penetrate the cartilage in the form of a pannus, and cartilage destruction takes place in the zone between the cells and cartilage. The cellular origin of rheumatoid pannus has been debated by many investigators, and it is accepted that fibroblast proliferation, endothelial cells proliferation and monocyte chemotaxis are probably involved. It has been observed that fibroblasts in the pannus share properties of the fibroblasts and chondrocytes. Mast cell activation is frequently associated with proinflammatory cytokine and metalloprotease expression, suggesting an important role for the mast cell in mediating matrix degradation. The mechanism of interaction of polymorphonuclear leukocytes with immune complexes trapped in rheumatoid cartilage resembles that associated with phenomenon of frustrated phagocytosis. Increased levels of IL-1 in the rheumatoid joint may play an important role in joint destruction by stimulation of pannus formation through induction of synovial cell attachment to the articular surface. Synovial cell attachment to cartilage may be the initial step in pannus formation. We have recently shown that the increased expression of VLA-5 and ICAM-1 at the cartilage-pannus junction may result from the interaction of synovial mononuclear cells with matrix proteins. Therefore, we have raised the possibility that VLA-5 may facilitate the growth of pannus by virtue of its ability to react with fibronectin with resulting proliferation of the synoviocytes of the pannus. Further study will be needed in order to understand the precise mechanism of cartilage erosion and pannus formation in the various arthritic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Ishikawa H, Ziff M, Electron microscopic observations of immunoreactive cells in the rheumatoid synovial membrane,Arthritis Rheum 19, 1–14 (1975).

    Article  Google Scholar 

  2. Ishikawa H, Relationship between HLA-DR positive cells and lymphocytes of different subsets in rheumatoid synovial membrane: an immunohistochemical and immunoelectron microscopic study,J Orthop Rheum 1, 146–158 (1988).

    Google Scholar 

  3. Ziff M, Immunological aspect of rheumatoid synovitis — 25 years,Arthritis Rheum 20, S31-S33 (1977).

    Google Scholar 

  4. Zvaifler NJ, The immunopathology of joint inflammation in rheumatoid arthritis,Adv Immunol 16, 265–336 (1977)

    Article  Google Scholar 

  5. Kobayashi I, Ziff M, Electron microscopic studies of the cartilage-pannus junction in rheumatoid arthritis,Arthritis Rheum 16, 475–483 (1975).

    Article  Google Scholar 

  6. Shiozawa S, Shiozawa K, Fujita T, Morphologic observations in the early phase of the cartilage—pannus junction,Arthritis Rheum 26 472–478 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. Ciobanu A, Ciobanu IR, Halalau Fet al., Histological and histoenzymological investigations of the rheumatoid articular cartilage,Rom J Morphol Embryol 40, 23–27 (1994).

    PubMed  CAS  Google Scholar 

  8. Xue C, Takahashi M, Hasunuma Tet al., Characterization of fibroblast-like cells in pannus lesions of patients with rheumatoid arthritis sharing properties of fibroblasts and chondrocytes,Ann Rheum Dis 56, 262–267 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Hauselmann HJ, Mechanism of cartilage destruction and nonsurgical therapeutic strategies to retard cartilage injury in rheumatoid arthritis,Curr Opin Rheumatol 9, 241–250 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. Kunkel SL, Lukacs N, Kasama Tet al., The role of chemokines in inflammatory disease,J Leukoc Biol 59, 6–12 (1996).

    PubMed  CAS  Google Scholar 

  11. Mohr W, The pathogenesis of joint destruction in chronic polyarthritis,Radiologe 36, 593–599 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. Zvaifler NJ, Firestein GS, Pannus and pannocytes; alternative models of joint destruction in rheumatoid arthritis,Arthritis Rheum 37, 783–789 (1994).

    Article  PubMed  CAS  Google Scholar 

  13. Hino K, Shiozawa S, Kuroki Yet al., EDA-containing fibronenctin is synthesized from rheumatoid synovial fibroblast-like cells,Arthritis Rheum 38, 678–683 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. Fassbender HG, Is pannus a residue of inflammation?Arthritis Rheum (Letter) 27, 956–957 (1984).

    Article  CAS  Google Scholar 

  15. Cooke TDV, Rheumatoid arthritis pannus; true or false?Arthritis Rheum (Letter) 28, 1195–1197 (1985).

    Article  CAS  Google Scholar 

  16. Mitrovic D The mechanism of cartilage destruction in rheumatoid arthritis,Arthritis Rheum (Letter) 28, 1192–1193 (1985).

    Article  CAS  Google Scholar 

  17. Lavietes BB, Diamond HS, Carsons SEet al., Possible contribution of cartilage to fibrous pannus,Arthritis Rheum 30, 119–120 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. Glant T, Hadas E, Nagy M, Cell-mediated and humoral responses to cartilage antigenic components,Scand J Immunol 9, 39–44 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. Leizer T, Clarris BJ, Ash PEet al., Interleukin-1 and interleukin-1 stimulate, the plasminogen activator activity and prostaglandin E2 levels of human synovial cells,Arthritis Rheum 30, 562–566 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. Dayer J-M, Stephenson ML, Schmidt Eet al., Purification of a factor from human blood monocyte-macrophages which stimulates the production of collagenase and prostaglandin E2 by cells cultured from rheumatoid synovial tissues,FEBS (Letter) 124, 253–256 (1981).

    Article  CAS  Google Scholar 

  21. Hamilton JA, Slywka J, Stimulation of human synovial fibroblast plasminogen activator production by mononuclear cells supernatants,J Immunol 126, 851–855 (1981).

    PubMed  CAS  Google Scholar 

  22. Dayer J-M, Demczuk S, Cytokines and other mediators in rheumatoid arthritis,Semin Immunopathol 7, 387–413 (1984).

    CAS  Google Scholar 

  23. Dayer J-M, Beutler B, Cerami A, Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts,J Exp Med 162, 2163–2168 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. Chin JA, Lin Y, Effects of recombinant human interleukin-1 on rabbit articular chondrocytes. Stimulation of prostanoid release and inhibition of cell growth,Arthritis Rheum 31, 1290–1296 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. Krane S, Dayer J-M, Simon LBet al., Mononuclear cell conditioned medium containing mononuclear cell, factor, homologous with interleukin-1, stimulates collagen and fibronectin synthesis by adherent rheumatoid synovial cells: effect of prostaglandin E2 and indomethacin,Coll Relat Res,5, 99–117 (1985).

    PubMed  CAS  Google Scholar 

  26. Dayer J-M, Rochemonteix B de, Burrus Bet al., Human recombinant interleukin-1 stimulates collagenase and prostaglandin E2 production by human synovial cells,J Clin Invest 77, 645–648 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. Tetlow LC, Wooley DE, Mast cells, cytokines and metalloproteinases at the rheumatoid lesion: dual immunolocalization studies,Ann Rheum Dis 54, 896–903 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. Jackson JR, Minton JA, Ho MLet al., Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1 beta,J Rheumatol 24, 1253–1259 (1997).

    PubMed  CAS  Google Scholar 

  29. Fassbender HG, Histomorphological basis of articular cartilage destruction in rheumatoid arthritis,Coll Relat Res 3, 141–155 (1983).

    PubMed  CAS  Google Scholar 

  30. Rissoan MC, Van Kooten C, Chomorat Pet al., The functional CD40 antigen of fibroblasts may contribute to the proliferation of rheumatoid synovium,Clin Exp Immunol 106, 481–490 (1996).

    Article  PubMed  CAS  Google Scholar 

  31. Hansh A, Stiehl P, Geiler G, Quantification of macrophages and granulocytes at the joint cartilage — pannus junction in rheumatoid arthritis,Z Rheumatol 55, 548–551 (1996).

    Google Scholar 

  32. Tetlow LC, Woolet DE, Eosinophils are signifcant cellular component of rheumatoid synovium in patients with late stage disease: comparative distributions with mast cells and macrophages,Ann Rheum Dis 55, 548–551 (1996).

    Article  PubMed  CAS  Google Scholar 

  33. Firestein GS, Zvaifler NJ, Peripheral blood and synovial fluid monocyte activation in inflammatory arthritis. II. Low levels of synovial fluid and synovial tissue interferon suggest that γ-interferon in not the primary macrophage activating factor,Arthritis Rheum 30, 864–871 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. Ridley MG, Panayi GS, Nicholas NSet al., Mechanism of macrophage activation in rheumatoid arthritis: the role of gamma interferon,Clin Exp Immunol 63, 587–593 (1986).

    PubMed  CAS  Google Scholar 

  35. Miossec P, Dinarello CA, Ziff M, Interleukin-1 lymphocyte chemotactic activity in rheumatoid arthritis synovial fluid,Arthritis Rheum 29, 461–470 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. Wood DD, Ihrie EJ, Dinarello CAet al., Isolation of an interleukin-l-like factor from human joint effusion,Arthritis Rheum 26, 975–983 (1983).

    Article  PubMed  CAS  Google Scholar 

  37. Degre M, Melbye OJ, Clark-Jensson O, Immune interferon in serum and synovial fluid in rheumatoid arthritis and related disorders,Ann Rheum Dis 42, 672–676 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. Sakalatvala J, Starsfield SJ, Townsend Y, Pig interleukin-1: purification of two immunological different leukocytes proteins that cause cartilage resorption, lymphocyte activation, and fever,J Exp Med 102, 1208–1222 (1985).

    Article  Google Scholar 

  39. Pasternak RD, Hubbs SJ, Caccese RGet al., Interleukin-1 stimulates the secretion of proteoglycan and collagen-degrading protease by rabbit articular chondrocytes,Clin Immunol Immunopathol 41, 351–367 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. Karran EH, Young TJ, Markwell RFet al., In vivo model of cartilage degradation-effect of a matrix metalloproteinase,Ann Rheum Dis 54, 662–669 (1995).

    Article  PubMed  CAS  Google Scholar 

  41. Deleuran B, Lemche P, Kristensen Met al., Localization of interleukin 8 in the synovial membrane, cartilage—pannus junction and chondrocytes in rheumatoid arthritis,Scand J Rheumatol 23, 2–7 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. Ugai K, Ishikawa H, Hirohata Ket al., Interaction of polymorphonuclear leukocytes with immune complexes trapped in rheumatoid articular cartilage,Arthritis Rheum 26, 1434–1441 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. Cooke TD, Hurd ER, Jasin Het al., Identification of immunoglobulins and complement in rheumatoid articular collagenous tissue,Arthritis Rheum 18, 541–551 (1975).

    Article  PubMed  CAS  Google Scholar 

  44. Ishikawa H, Smiley JD, Ziff M, Electron microscopic demonstration of immunoglobulin deposition in rheumatoid cartilage,Arthritis Rheum 18, 565–576 (1975).

    Article  Google Scholar 

  45. Henson DM, The immunologic release of constituents, from neutrophilic leukocyte. I. The role of antibody and complement on non-phagocytosable surfaces or phagocytosbale particles,J Immunol 107, 1535–1546 (1971).

    PubMed  CAS  Google Scholar 

  46. Weissmann G, Lysosomes and rheumatoid inflammation,Arthritis Rheum 20, S193-S204 (1977).

    Google Scholar 

  47. Shiozawa S, Jasin HE, Ziff M, Absence of immunoglobulins in rheumatoid cartilage—pannus junctions,Arthritis Rheum 23, 816–821 (1980).

    Article  PubMed  CAS  Google Scholar 

  48. Ishikawa H, Ohno O, Saura Ret al., Cytokine enhancement of monocyte/synovial cell attachment to the surface of cartilage: a possible trigger of pannus formation in rheumatoid arthritis,Rheumatol. Int 11, 31–36 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. Elices MJ, Hemler ME, The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others,Proc Natl Acad Sci USA 86, 9906–9910 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. Helmer ME, Takada Y, Elices Met al., Structure and functions for the adhesion receptor VLA-2 and VLA-4; comparisons to other members of the integrin superfamily, in:Leukocyte Adhesion Molecules; Structure, Function and Regulation, Springer TA, Anderson DC, Rosenthal AS, Rothlein R (Eds), p. 44. Springer, Berlin (1989).

    Google Scholar 

  51. Ishikawa H, Hirata S, Nishibayashi Yet al., The role of adhesion molecules in synovial-pannus formation in rheumatoid arthritis,Clin Orthop Rel Res 300, 297–303 (1994).

    Google Scholar 

  52. Ishikawa H, Hirata S, Andoh Yet al., The role of adhesion molecules in synovial pannus formation in rheumatoid arthritis: an immunohistochemical and immunoelectron microscopic study,Arthritis Rheum 37, 311 (1994).

    Google Scholar 

  53. Ishikawa H, Hirata S, Andoh Yet al., An immunohistochemical and immunoelectron microscopic study of adhesion molecules in synovial pannus formation in rheumatoid arthritis,Rheumatol Int 16, 53–60 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. Elices MJ, Osborn L, Takada Uet al., VCAM-1 on activated endothelium interacts with the leukocytes integrin VLA-4 at a site distinct from VLA-4/fibronectin binding site,Cell 60, 577–584 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. Ishikawa H, Hirata S, Nishibayashi Yet al., Role of adhesion molecules in the lymphoid cell distribution in rheumatoid synovial membrane,Rheumatol Int 13, 229–236 (1994).

    Article  Google Scholar 

  56. Hanley J, Pledger D, Parkhill Wet al., Phenotypic characterization of dissociated mononuclear cells from rheumatoid synovial membrane,Rheumatol Int 17, 1274–1279 (1990).

    Google Scholar 

  57. Laffon A, Garcia-Vincuna R, Humbria Aet al., Upregulated expression and function of VLA-4 fibronectin receptors on human activated T cells in rheumatoid arthritis,J Clin Invest 88, 546–552 (1991).

    Article  PubMed  CAS  Google Scholar 

  58. Pitzalis C, Kingsley G, Panayi G Adhesion molecules in rheumatoid arthritis: role in the pathogenesis and prospects for therapy,Ann Rheum Dis 53, 287–288 (1994)

    Article  PubMed  CAS  Google Scholar 

  59. Rodriquets RM, Pitzalis C, Kingsley GHet al., T-lymphocyte adhesion to fibronectin: a possible mechanism for T cell accumulation in the rheumatoid joint,Clin Exp Immunol 89, 439–445 (1992).

    Google Scholar 

  60. Salter DM, Hughes DE, Simpson Ret al., Integrin expression by human articular chondrocytes,Br J Rheumatol 31, 231–234 (1992).

    Article  PubMed  CAS  Google Scholar 

  61. Brown RA, Fones KC The synthesis and accumulation of fibronectin by human articular cartilage,J Rheumatol 17, 65–72 (1990).

    PubMed  CAS  Google Scholar 

  62. Mollenhauer J, Bee JA, Lixarbe MAet al., Role of anchorin C II, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen,J Cell Biol 98, 1572–1578 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ishikawa, H., Hirata, S. & Saura, R. Rheumatoid pannus formation: synovial cell attachment to the surface of cartilage. Japanese Journal of Rheumatology 8, 213–223 (1998). https://doi.org/10.1007/BF03041243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041243

Key words

Navigation