Skip to main content
Log in

Biosafety of kanamycin-resistant transgenic plants

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Kanamycin resistance is one of the most frequently used selection markers for obtaining transgenic plants. The introduction of these transgenic plants into agricultural practice will cause the kanamycin resistance gene and the gene product to be present on a large scale. The desirability of this situation is analysed. The nature, properties and applications of the antibiotic kanamycin are briefly reviewed, as are the mechanisms of kanamycin resistance. It is argued that the gene used for resistance is an excellent choice because of the high substrate specificity of the enzyme encoded. Human or veterinary antibiotic therapies will not be compromised. Also, the physico-chemical characteristics of the antibiotic exclude the existence of selective conditions in the environment. Therefore, a transgenic plant or any other organism that might have acquired the gene will not get any selective advantage because of this gene. Evidence further suggests there is no toxicity or predictable harm of both gene or gene product for human or animal consumption. Full legislative clearance of this transgenic trait is therefore acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, J.L., Shigeno, D.S., Calomiris, J.J. and Seidler, R.J. (1981) Antibiotic-resistant bacteria in drinking water.Appl. Environ. Microbiol. 42, 277–83.

    PubMed  CAS  Google Scholar 

  • Bakken, L. (1990) Microbial growth and immobilization/mineralization of N in the rhizosphere.Symbiosis 9, 37–41.

    Google Scholar 

  • Beck, E., Ludwig, G., Auerswald, E.A., Reiss, B. and Schaller, H. (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5.Gene 9, 327–36.

    Article  Google Scholar 

  • Benveniste, R. and Davies, J. (1973) Aminoglycoside antibiotic inactivating enzymes inActinomyces similar to those present in clinical isolates of antibiotic resistant bacteria.Proc. Natl Acad. Sci. USA 70, 2276–80.

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz, D.B. (1990) The food safety of transgenic animals.Bio/Technology 8, 819–25.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M.W., Flavell, R.B. and Chilton, M.-D. (1983) A chimaeric antibiotic resistance marker gene as a selectable marker for plant cell transformation.Nature 304, 184–7.

    Article  CAS  Google Scholar 

  • Bryan, L.E. and Kwan, S. (1981) Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative bacteria growing anaerobically.J. Antimicrob. Chemother. 8, 1–8.

    PubMed  CAS  Google Scholar 

  • Budavari, S., O.Neil, M.J., Smith, A. and Heckelman, P.E., eds (1989)The Merck Index, an Encyclopedia of Chemicals, Drugs and Biologicals, 11th edition. New Jersey, Rahway: Merck & Co., Inc.

    Google Scholar 

  • Calgene (1990) Kanr Gene: Safety and use in the Production of Genetically, Engineered Plants, Request for Advisory Opinion. Calgene Inc., CA, USA.

    Google Scholar 

  • Calomiris, J.J., Armstrong, J.L. and Seidler, R.J. (1984) Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water.Appl. Environ. Microbiol. 47, 1238–42.

    PubMed  CAS  Google Scholar 

  • CBS (1991)Agricultural Data 1991. Netherlands Central Bureau of Statistics CBS-Publications, The Hague: SDU.

    Google Scholar 

  • Cohen, J.I. and Chambers, J.A. (1991) Biotechnology and biosafety: perspective of an international donor agency. In Levin, M.A. and Strauss, H.S. eds,Risk Assessment in Genetic Engineering, pp. 378–94. New York: McGraw-Hill.

    Google Scholar 

  • Corpet, D.E. (1988) Antibiotic resistance from food.New Eng. J. Med. 318, 1206–7.

    PubMed  CAS  Google Scholar 

  • Courvalin, P. and Davies, J. (1977) Plasmid-mediated amino-glycoside phosphotransferase of broad substrate range that phosphorylates amikacin.Antimicrob. Agents Chemother. 11, 619–24.

    PubMed  CAS  Google Scholar 

  • Dale, E.C. and Ow, D. (1991) Gene transfer with subsequent removal of the selection gene from the host genome.Proc. Natl Acad. Sci. USA 88, 10558–62.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B.D. (1988) The lethal action of aminoglycosides.J. Antimicrob. Chemother. 22, 1–3.

    PubMed  CAS  Google Scholar 

  • Demain, A.L. (1974) How do antibiotic-producing micro-organisms avoid suicide?Ann. N.Y. Acad. Sci. 235, 601–12.

    PubMed  CAS  Google Scholar 

  • Dickie, P., Bryan, L.E. and Pickard, M.A. (1978) Effect of enzymatic adenylation on dihydrostreptomycin accumulation inEscherichia coli carrying an R-factor: model explaining aminoglycoside resistance by inactivating mechanisms.Antimicrob. Agents Chemother. 14, 569–80.

    PubMed  CAS  Google Scholar 

  • Eijlander, R. and Stiekema, W.J. (1990) Study of gene dispersal from plants produced by recombinant DNA technology: assessment of the crossability of potato and two wild relatives. InSectorial Meeting on Risk Assessment, pp. 86. Commission of European Communities, Italy: Padova.

    Google Scholar 

  • van Elsas, J.D. (1992) Antibiotic resistance gene transfer in the environment. In Wellington, E.H.M. and van Elsas, J.D. eds.Genetic Interactions Between Microorganisms in Natural Environments. Manchester: Manchester University Press, (in press).

    Google Scholar 

  • van Elsas, J.D. and Pereira, M.T.P.R.R. (1986) Occurrence of antibiotic resistance among bacilli in Brazilian soils and the possible involvement of resistance plasmids.Plant Soil 94, 213–26.

    Article  Google Scholar 

  • Evans, D.A. (1989) Techniques in plant cell and tissue culture. In Kung, S. and Arntzen, C.J. eds,Plant Biotechnology, pp. 53–76. Boston: Butterworths.

    Google Scholar 

  • Flavell, R.B., Dart, E., Fuchs, R.L. and Fraley, R.T. (1992) Selectable marker genes: safe for plants?Bio/Technology 10, 141–4.

    Article  PubMed  CAS  Google Scholar 

  • Fraley, R.T. (1989) Genetic engineering for crop improvement. In Kung, S. and Arntzen, C.J. eds,Plant Biotechnology, pp. 395–407. Boston: Butterworths.

    Google Scholar 

  • Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Gallupi, G.R., Goldberg, S.B., Hoffmann, N.L. and Woo, S.C. (1983) Expression of bacterial genes in plant cells.Proc. Natl Acad. Sci. USA 80, 4803–7.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, D. (1976) The production and role of antibiotics in soil.J. Antibiot. 29, 987–1000.

    PubMed  CAS  Google Scholar 

  • Grant, S.G.N., Jessee, J., Bloom, F.R. and Hanahan, D. (1990) Differential plasmid rescue from transgenic mouse DNAs intoEscherichia coli methylation-restriction mutants.Proc. Natl Acad. Sci. USA 87, 4645–9.

    Article  PubMed  CAS  Google Scholar 

  • Henschke, R.B. and Schmidt, F.R.J. (1989) Survival, distribution, and gene transfer of bacteria in a compact soil microcosm system.Biol. Fertil. Soil. 8, 19–24.

    Article  Google Scholar 

  • Herrera-Estrella, L., DeGreve, H., van Montagu, M. and Schell, J. (1983) Expression of chimaeric genes transferred into plant cells using a Ti plasmid derived vector.Nature 303, 209–13.

    Article  CAS  Google Scholar 

  • Hilder, V.A. and Gatehouse, A.M.R. (1991) Phenotypic costs of an extra gene.Transgenic Res. 1, 54–60.

    Article  CAS  Google Scholar 

  • Hughes, V.M. and Datta, N. (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era.Nature 302, 725–6.

    Article  PubMed  CAS  Google Scholar 

  • IFBC (1990) Biotechnologies and food: assuring the safety of foods produced by genetic modification.Reg. Tox. Pharm. 12, 1–196.

    Article  Google Scholar 

  • Jones, D.D. and Maryanski, J.H. (1991) Safety considerations in the evaluation of transgenic plants for human food. In Levin, M.A. and Strauss, H.S. eds,Risk Assessment in Genetic Engineering, pp. 64–82. New York: McGraw-Hill.

    Google Scholar 

  • Kaniewski, W., Lawson, C., Sammons, B., Haley, L., Hart, J., Delannay, X. and Tumer, N.E. (1990) Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y.Bio/Technology 8, 750–4.

    Article  Google Scholar 

  • Keeler, K.H. (1989) Can genetically engineered crops become weeds?Bio/Technology 7, 1134–9.

    Google Scholar 

  • Keeler, K.H. and Turner, C.E. (1991) Management of transgenic plants in the environment. In Levin, M.A. and Strauss, H.S. eds,Risk Assessment in Genetic Engineering, 189–218. New York: McGraw-Hill.

    Google Scholar 

  • Kelch, W.J. and Lee, J.S. (1978) Antibiotic resistance patterns of Gram-negative bacteria isolated from environmetal sources.Appl. Environ. Microbiol. 36, 3, 450–6.

    PubMed  CAS  Google Scholar 

  • Kors, F.T.M. (1991)ANTIBIOTICS, Mode of Action, Spectrum, Resistance, Solubility, Sterilisation, Stability. Haarlem: Duchefa.

    Google Scholar 

  • Levy, S.B. (1978) Emergence of antibiotic-resistant bacteria in the intestinal flora of farm inhabitants.J. Infect. Dis. 137, 688–90.

    CAS  Google Scholar 

  • Levy, S.B. and Marshall, B. (1988) Genetic transfer in the natural environment. In Sussman, M., Collins, C.H., Skinner, F.A. and Stewart-Tull, D.E. eds,The Release of Genetically-engineered Microorganisms, pp. 61–76. London: Academic Press.

    Google Scholar 

  • Levy, S.B., Marshall, B., Schluederberg, S., Rowse, D. and Davis, J. (1988) High frequency of antimicrobial resistance in human fecal flora.Antimicrob. Agents Chemother. 32, 1801–6.

    PubMed  CAS  Google Scholar 

  • Li, D.M. and Alexander, M. (1990) Factors affecting co-inoculation with antibiotic-producing bacteria to enhance rhizobial colonization and nodulation.Plant Soil 129, 195–201.

    Google Scholar 

  • Matsuhashi, Y., Sawa, T., Takeuchi, T., Umezawa, H. and Nagatsu, I. (1976) Localization of aminoglycoside 3′-phosphotransferase II on a cellular surface of R-factor-resistantE. coli. J. Antibiol. 29, 1129–30.

    CAS  Google Scholar 

  • Misato, T., Ko, K. and Yamaguchi, I. (1977) Use of antibiotics in agriculture.Adv. Appl. Microbiol. 21, 53–88.

    Article  PubMed  CAS  Google Scholar 

  • Mouton, R.P. (1985) Mechanisms of resistance to aminoglycosides. In Michel, M.F. and van der Meer, J.W.M. eds,Resistance and Development of Resistance. Possible Implications for Antibacterial Policy, pp. 31–40. The Hague: Proceedings of the BRL Kurhaus workship on antibiotics.

  • Okamoto, S. and Suzuki, Y. (1965) Chloramphenicol-, dihydro-streptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistantEscherichia coli carrying episome ‘R’.Nature 208, 1301–3.

    Article  PubMed  CAS  Google Scholar 

  • Olson, B.H., Ogunseitan, O.A., Rochelle, P.A., Tebbe, C.C. and Tsai, Y.L. (1991) The implications of horizontal gene transfer for the environmental impact of genetically engineered microorganisms. In Levin, M.A. and Strauss, H.S. eds,Risk Assessment in Genetic Engineering, pp. 163–88. New York: McGraw-Hill.

    Google Scholar 

  • Otten, H., Plempel, M. and Siegenthaler, W., eds (1988)Antibiotica-fibel. Stuttgart, Georg Thieme Verlag.

    Google Scholar 

  • Pinck, L.A., Holton, W.F. and Allison, F.E. (1961) Antibiotics in soils: 1. Physico- chemical studies of antibiotic-clay complexes.Soil Sci. 91, 22–8.

    Article  CAS  Google Scholar 

  • Pratt, W. and Fekety, R. (1986)The Antimicrobial Drugs. Oxford: Oxford University Press.

    Google Scholar 

  • Reynaerts, A., De Block, M., Hernalsteens, J.P. and van Montagu, M. (1988) Selectable and screenable markers. In Gelvin, S.B., Schilperoort, R. and Verma, D.P.S. eds,Plant Molecular Biology Manual, pp. A9/1–16. Dordrecht: Kluwer.

    Google Scholar 

  • Reynolds, J.E.F., ed. (1989)The Martindale, the Extra Pharmacopoeia, Incorporating Squire's Companion. London: Pharmaceutical Press.

    Google Scholar 

  • Röhmheld, V. (1990) The soil-root interface in relation to mineral nutrition.Symbiosis 9, 19–27.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989)Molecular Cloning, a Laboratory Manual, 2nd edition. New York: Cold Spring Harbor Press.

    Google Scholar 

  • Savage, D.C. (1977) Microbial ecology of the gastrointestinal tract.Ann. Rev. Microbiol. 31, 107–33.

    Article  CAS  Google Scholar 

  • Scholten, A.H., Feenstra, M.H. and Hamstra, A.M. (1991) Public acceptance of foods from biotechnology.Food Biotech. 5, 331–45.

    Article  Google Scholar 

  • Shannon, K. and Phillips, I. (1982) Mechanisms of resistance to aminoglycosides in clinical isolates.J. Antimicrob. Chemother. 9, 91–102.

    PubMed  CAS  Google Scholar 

  • Sharples, F.E. (1991) Ecological aspects of hazard identification for environmental uses of genetically engineered organisms. In Levin, M.A. and Strauss, H.S. eds,Risk Assessment in Genetic Engineering, pp. 18–31. New York: McGraw-Hill.

    Google Scholar 

  • Siegenthaler, W.E., Bonetti, A. and Luthy, R. (1986) Aminoglycoside antibiotics in infectious diseases. An overview.Am. J. Medic. 80, 2–14.

    Article  CAS  Google Scholar 

  • Soulides, D.A. (1962) Antibiotics in soils. V. Stability and release of soil-adsorbed antibiotics.Soil Sci. 94, 239–44.

    Article  Google Scholar 

  • Stewart, G.J. (1989) The mechanism of natural transformation. In Levy, S.B. and Miller, R.V. eds,Gene Transfer in the Environment, pp. 139–64. New York: McGraw-Hill.

    Google Scholar 

  • Stotzky, G. (1989) Gene transfer among bacteria in soil. In Levy, S.B. and Miller, R.V. eds,Gene Transfer in the Environment, pp. 165–222. New York: McGraw-Hill.

    Google Scholar 

  • Stotzky, G. and Babich, H. (1984) Fate of genetically-engineered microbes in natural environments.Recomb. DNA Tech. Bull. 7, 163–88.

    PubMed  CAS  Google Scholar 

  • Thomashow, L.S., Weller, D.M., Bonsall, R.F. and Pierson III, L.S. (1990) Production of antibiotic phenazine-1-carboxilic acid by fluorescentPseudomonas species in the rhizosphere of wheat.Appl. Environ. Microbiol. 56, 908–12.

    PubMed  CAS  Google Scholar 

  • Tiedje, J.M., Colwell, R.K., Grossman, Y.L., Hodson, R.E., Lenski, R.E., Mack, R.N. and Regal, P.J. (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations.Ecology 70, 289–315.

    Article  Google Scholar 

  • Trieu-Cuot, P., Arthur, M. and Courvalin, P. (1987) Origin, evolution and dissemination of antibiotic resistance genes.Microbiol. Sci. 4, 263–6.

    PubMed  CAS  Google Scholar 

  • Vliegenthart, J.S. (1991) Aminoglycoside resistance. Structure, occurrence, and identification of genes encoding aminoglycoside-modifying enzymes. Thesis, RU Leiden.

  • Vliegenthart, J.S., Ketelaar-van Galen, P. and van de Klundert, J.A.M. (1990) Identification of three genes coding for aminoglycoside-modifying enzymes by means of the polymerase chain reaction.J. Antimicrob. Chemother. 25, 759–65.

    PubMed  CAS  Google Scholar 

  • Weide, R., Koornneef, M. and Zabel, P. (1989) A simple, nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants.Theor. Appl. Genet. 78, 169–72.

    Article  Google Scholar 

  • Williams, S.T. and Vickers, J.C. (1986) The ecology of antibiotic production.Microb. Ecol. 12, 43–52.

    Article  CAS  Google Scholar 

  • Williamson, M., Perrins, J. and Fitter, A. (1990) Releasing genetically engineered plants: present proposals and possible hazards.TREE 5, 417–9.

    Google Scholar 

  • van Wordragen, M. and Dons, H. (1992)Agrobacterium tumefaciens-mediated transformation of recalcitrant crops.Plant Mol. Biol. Rep. 10, 12–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nap, JP., Bijvoet, J. & Stiekema, W.J. Biosafety of kanamycin-resistant transgenic plants. Transgenic Research 1, 239–249 (1992). https://doi.org/10.1007/BF02525165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02525165

Keywords

Navigation