Advertisement

Journal of Nonlinear Science

, Volume 3, Issue 1, pp 1–33 | Cite as

Numerical integration of ordinary differential equations on manifolds

  • P. E. Crouch
  • R. Grossman
Article

Summary

This paper is concerned with the problem of developing numerical integration algorithms for differential equations that, when viewed as equations in some Euclidean space, naturally evolve on some embedded submanifold. It is desired to construct algorithms whose iterates also evolve on the same manifold. These algorithms can therefore be viewed as integrating ordinary differential equations on manifolds. The basic method “decouples” the computation of flows on the submanifold from the numerical integration process. It is shown that two classes of single-step and multistep algorithms can be posed and analyzed theoretically, using the concept of “freezing” the coefficients of differential operators obtained from the defining vector field. Explicit third-order algorithms are derived, with additional equations augmenting those of their classical counterparts, obtained from “obstructions” defined by nonvanishing Lie brackets.

Key words

numerical integration manifold differential equation flow lie algebra algorithm symbolic computation frozen coefficients 

AMS Subject Classifications

34A50 34A34 65L06 93C15 58F99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Austin, P. S. Krishnaprasad, and L.-S. Wang, Symplectic and Almost Poisson Integration of Rigid Body Systems,Proceedings of the 1991 International Conference on Computational Engineering Science, ed. S. Atluvi, Melbourne, Australia, August, (1991).Google Scholar
  2. 2.
    J. C. Butcher, An Order Bound for Runge-Kutta Methods,SIAM J. Numerical Analysis, Vol. 12, pp. 304–315, (1975).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    J. C. Butcher,The Numerical Analysis of Ordinary Differential Equations, John Wiley, (1986).Google Scholar
  4. 4.
    P. Channell, Symplectic Integration for Particles in Electric and Magnetic Fields, (Accelerator Theory Note, No. AT-6: ATN-86-5). Los Alamos National Laboratory, (1986).Google Scholar
  5. 5.
    P. Channell, and C. Scovel, Symplectic Integration of Hamiltonian Systems, submitted toNonlinearity, June, 1988.Google Scholar
  6. 6.
    A. Chorin, T. J. R. Hughes, J. E. Marsden, and M. McCracken, Product Formulas and Numerical Algorithms,Comm. Pure and Appl. Math., Vol. 31, pp. 205–256, (1978).zbMATHMathSciNetGoogle Scholar
  7. 7.
    P. E. Crouch, Spacecraft Altitude Control and Stabilization: Application of Geometric Control to Rigid Body Models,IEEE Transactions on Automatic Control, Vol. AC-29, pp. 321–331, (1986).MathSciNetGoogle Scholar
  8. 8.
    P. E. Crouch, and R. L. Grossman, The Explicit Computation of Integration Algorithms and First Integrals for Ordinary Differential Equations with Polynomial Coefficients Using Trees,Proceedings of the 1992 International Symposium of Algebraic and Symbolic Computation, ACM, (1992).Google Scholar
  9. 9.
    P. Crouch, R. Grossman, and R. G. Larson, Computations Involving Differential Operators and Their Actions on Functions,Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ACM, (1991).Google Scholar
  10. 10.
    P. Crouch, R. Grossman, and R. Larson, Trees, Bialgebras, and Intrinsic Numerical Integrators, (Laboratory for Advanced Computing Technical Report, # LAC90-R23). University of Illinois at Chicago, May, (1990).Google Scholar
  11. 11.
    R. de Vogelaere, Methods of Integration which Preserve the Contact Transformation Property of the Hamiltonian Equations, Department of Mathematics, University of Notre Dame Report Vol. 4.Google Scholar
  12. 12.
    A. Deprit, Canonical Transformations Depending upon a Small Parameter,Celestial Mechanics, Vol. 1, pp. 1–31, (1969).zbMATHGoogle Scholar
  13. 13.
    A. J. Dragt, and J. M. Finn, Lie Series and Invariant Functions for Analytic Symplectic Maps,J. Math. Physics, Vol. 17, pp. 2215–2227, (1976).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Feng, The Symplectic Methods for Computation of Hamiltonian Systems,Springer Lecture Notes in Numerical Methods for P.D.E.'s, (1987).Google Scholar
  15. 15.
    C. W. Gear, Simultaneous numerical solution of differential-algebraic equations,IEEE Transactions on Circuit Theory, Vol. 18, pp. 89–95, (1971).CrossRefGoogle Scholar
  16. 16.
    Ge-Zhong, and J. Marsden, Lie-Poisson Hamiltonian-Jacobi Theory and Lie-Poisson Integrations,Phys. Lett. A., Vol. 133, pp. 134–139, (1988).MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Grossman, and R. Larson, The Symbolic Computation of Derivations Using Labeled Trees,J. Sympolic Computation, to appear.Google Scholar
  18. 18.
    E. Hairer, C. Lubich, and M. Roche,The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, Springer-Verlag, Berlin, (1989).zbMATHGoogle Scholar
  19. 19.
    E. Hairer, S. P. Norsett, and G. Wanner,Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin, (1987).zbMATHGoogle Scholar
  20. 20.
    E. Isaacson, and H. B. Keller,Analysis of Numerical Methods, Wiley, (1966).Google Scholar
  21. 21.
    A. J. Krener and R. Hermann, “Nonlinear Observability and Controllability,” IEEETransactions on Automatic Control A.C.-22, pp. 728–740, (1977).Google Scholar
  22. 22.
    G. Meyer, On the Use of Euler's Theorem on Rotations for the Synthesis of Attitude Control Systems, (NASA Technical Note, NASA TN.D-3643). Ames Research Center, Moffet Field, California, (1966).Google Scholar
  23. 23.
    L. R. Petzold, Order Results for Implicit Runge-Kutta Methods Applied to Differential/Algebraic Systems,SIAM Journal of Numerical Analysis, Vol. 23, pp. 837–852, (1986).zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    W. C. Rheinboldt, Differential-Algebraic Systems as Differential Equations on Manifolds,Mathematics of Computation, Vol. 43, pp. 473–482, (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    R. Ruth, A Canonical Integration Technique,IEEE Transactions on Nuclear Science, Vol. 30, p. 2669, (1983).CrossRefGoogle Scholar
  26. 26.
    J. M. Sanz-Serra, Runge-Kutta Schemes for Hamiltonian Systems,Bit, Vol. 28, pp. 877–883, (1988).MathSciNetCrossRefGoogle Scholar
  27. 27.
    C. Scovel, Symplectic Numerical Integration of Hamiltonian Systems,Proceedings of the MSRI Workshop on the Geometry of Hamiltonian Systems, to appear.Google Scholar
  28. 28.
    F. Silva Leite, and J. Vitoria, Generalization of the De Moivre Formulas for Quaternions and Octonions,Estudos de Matematica in the Honour of Luis de Albequerque, Universidade de Coimbra, pp. 121–133, (1991).Google Scholar
  29. 29.
    F. Silva Leite, C. Simoes, and J. Vitoria, Hypercomplex Numbers and Rotations, Universidade Do Minho, 4–8, Vol. 3, pp. 636–643, (1987).MathSciNetGoogle Scholar
  30. 30.
    Dao-Liu Wang, “Symplectic Difference Schemes for Hamiltonian Systems on Poisson Manifolds,” Academia Senica, Computing Center, Beijing, China, (1988).Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • P. E. Crouch
    • 1
  • R. Grossman
    • 2
  1. 1.Center for Systems Science and EngineeringArizona State UniversityTempeUSA
  2. 2.Laboratory for Advanced ComputingUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations