Skip to main content

Adaptive hypertext navigation based on user goals and context

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Hypertext systems allow flexible access to topics of information, but this flexibility has disadvantages. Users often become lost or overwhelmed by choices. An adaptive hypertext system can overcome these disadvantages by recommending information to users based on their specific information needs and preferences. Simple associative matrices provide an effective way of capturing these user preferences. Because the matrices are easily updated, they support the kind of dynamic learning required in an adaptive system.

HYPERFLEX, a prototype of an adaptive hypertext system that learns, is described. Informal studies with HYPERFLEX clarify the circumstances under which adaptive systems are likely to be useful, and suggest that HYPERFLEX can reduce time spent searching for information by up to 40%. Moreover, these benefits can be obtained with relatively little effort on the part of hypertext authors or users.

The simple models underlying HYPERFLEX's performance may offer a general and useful alternative to more sophisticated modelling techniques. Conditions under which these models, and similar adaptation techniques, might be most useful are discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    Anderson, J. R.: 1988, ‘The Expert Module’. In: M.C. Poison and J.J. Richardson (eds.),Foundations of Intelligent Tutoring Systems. New Jersey: Erlbaum.

    Google Scholar 

  2. 2.

    Anderson, M. P., M. Darnell, and R. Simons: 1990, ‘Network Navigator: A Graphical User Interface for Browsing Networks’. IBM STL Human Factors Center Technical Report #83, San Jose, CA: IBM.

    Google Scholar 

  3. 3.

    Belew, R. K.: 1989, ‘Adaptive Information Retrieval: Using Connectionist Representations to Retrieve and Learn About Documents’. Proceedings of SIGIR, Cambridge, MA., pp. 11–20.

  4. 4.

    Benyon, D. and D. Murray: (1988). ‘Experience with Adaptive Interfaces’,The Computer Journal 31, 465–473.

    Google Scholar 

  5. 5.

    Carroll, J. and J. McKendree: 1986, ‘Interface Design Issues for Advice Giving Expert Systems’. IBM Research Report, RC 11984 (#53988). Yorktown Heights, NY: IBM Research Division.

    Google Scholar 

  6. 6.

    Carlson, D., and S. Ram: 1990, ‘Hyperlntelligence: The Next Frontier’,Communications of the ACM 33, 311–321.

    Google Scholar 

  7. 7.

    Chin, J. P.: 1989, ‘A Dynamic User Adaptable Menu System: Linking It All Together’,Proceedings of the Human Factors Society, 33rd Annual Meeting, pp. 413–417.

  8. 8.

    Cole, B. C.: 1990, ‘Hypertext Tackles the Information Glut’,Electronics 63, 66–68.

    Google Scholar 

  9. 9.

    Conklin, J.: 1987, ‘Hypertext: An Introduction and Survey’,IEEE Computer 20, 17–41.

    Google Scholar 

  10. 10.

    Croft, B. W.: 1984, ‘The Role of Context and Adaption in User Interfaces’,International Journal of Man-Machine Studies 21, 283–292.

    Google Scholar 

  11. 11.

    Dumais, S. T.: 1988, ‘Textual Information Retrieval’. In: M. Helander (ed.):Handbook of Human-Computer Interaction. North-Holland: Elsevier Science Publishers, pp. 673–700.

    Google Scholar 

  12. 12.

    Dumais, S. T., G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman; 1988, ‘Using Latent Semantic Analysis to Improve Access to Textual Information’.CHI'88 Conference Proceedings, New York: ACM, pp. 281–285.

    Google Scholar 

  13. 13.

    Encarnacion, A. O. and C. Boyle: 1992, ‘A User Model Based Hypertext Documentation System’. Manuscript submitted to UMUAI.

  14. 14.

    Furnas, G. W.: 1985, ‘Experience With an Adaptive Indexing Scheme’.CHI'85 Conference Proceedings, New York: ACM, pp. 131–135.

    Google Scholar 

  15. 15.

    Furnas, G. W.: 1986, ‘Generalized Fisheye Views’.CHI'86 Conference Proceedings, New York: ACM, pp. 16–23.

    Google Scholar 

  16. 16.

    Greenberg, S. and I. H. Witten: 11985, ‘Adaptive Personalized Interfaces—a Question of Viability’,Behavior and Information Technology 4(1), 31–45.

  17. 17.

    Grice, R. A., L. S. Ridgeway, and E. J. See: 1991, ‘Hypertext: Controlling the Leaps and Bounds’,Technical Communications, First Quarter 48–56.

  18. 18.

    Holynski, M.: 1988, ‘User-Adaptive Computer Graphics’,International Journal of Man-Machine Studies 29, 539–548.

    Google Scholar 

  19. 19.

    Horton, W.: 1991, ‘Is Hypertext the Best Way to Document Your Product? An Assay for Designers’,Technical Communications, First Quarter, 20–35.

  20. 20.

    Ide, E. and G. Salton: 1971, ‘Interactive Search Strategies’. In: G. Salton (ed.):The Smart Retrieval System — Experiments in Automatic Document Processing. New Jersey: Prentice Hall.

    Google Scholar 

  21. 21.

    Innocent, P. R.: 1982, ‘Towards Self-Adaptive Interface Systems’,International Journal of Man-Machine Studies 16, 287–299.

    Google Scholar 

  22. 22.

    Kaplan, C. A. and G. Wolff: 1990, ‘Adaptive Hypertext’,Proceedings of the Intelligent Systems Technical Symposium, Endicott, NY: IBM.

    Google Scholar 

  23. 23.

    Kass, R. and T. Finin: 1989, ‘The Role of User Models in Cooperative Interactive Systems’,International Journal of Intelligent Systems 4, 81–112.

    Google Scholar 

  24. 24.

    Kobsa, A. and W. Wahlster (eds.): 1989,User Models in Dialog Systems, Heidelberg: Springer-Verlag.

    Google Scholar 

  25. 25.

    Kok, A. J.: 1991, ‘A Review and Synthesis of User Modelling in Intelligent Systems’,The Knowledge Engineering Review 6(1), 21–47.

    Google Scholar 

  26. 26.

    Kok, A. J. and A. M. Botman: 1988, ‘Retrieval Based on User Behavior’.Proceedings of the 11th International Conference on Research and Development in Information Retrieval, Grenoble, pp. 343–358.

  27. 27.

    McKendree, J.: 1990, ‘Effective Feedback Content for Tutoring Complex Skills’,Human Computer Interaction 5, 381–413.

    Google Scholar 

  28. 28.

    Nelson, M. J.: 1991, ‘The Design of a Hypertext Interface for Information Retrieval’,The Canadian Journal of Information Science 16 (2), 1–12.

    Google Scholar 

  29. 29.

    Norcio, A. F. and J. Stanley: 1989, ‘Adaptive Human-Computer Interfaces: A Literature Survey and Perspective,IEEE Transactions on Systems, Man, & Cybernetics 19, 399–408.

    Google Scholar 

  30. 30.

    Reisner, P.: 1966, ‘Evaluation of a Growing Thesaurus’, IBM Research Report RC-1662, Yorktown Heights, NY: IBM Research Center.

    Google Scholar 

  31. 31.

    Rich, E.: 1983, ‘Users as Individuals: Individualizing User Models’,International Journal of Man-Machine Studies 18, 199–214.

    Google Scholar 

  32. 32.

    Salomon, G. T. Oren, and K. Kreitman: 1989, ‘Using Guides to Explore Multimedia Databases’,Proceedings of the 22nd Annual Hawaii International Conference on System Science. IEEE Computer Society Press, Vol. 4, pp. 3–11.

    Google Scholar 

  33. 33.

    Totterdell, P. and P. Rautenbach: 1990, ‘Adaptation as a Problem of Design’, In: D. Browne, P. Totterdell, and M. Norman (Eds.):Adaptive User Interfaces. London: Harcourt Brace Jovanovich.

    Google Scholar 

  34. 34.

    Totterdell, P., A. Rautenbach, A. Wilkinson, and S. O. Anderson: 1990, ‘Adaptive Interface Techniques’, In: D. Browne, P. Totterdell, and M. Norman (eds.):Adaptive User Interface. London: Harcourt Brace Jovanovich.

    Google Scholar 

  35. 35.

    Weir, M. K.: 1991, ‘A Method for Self-Determination of Adaptive Learning Rates in Back Propagation’,Neural Networks 4, 371–379.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaplan, C., Fenwick, J. & Chen, J. Adaptive hypertext navigation based on user goals and context. User Model User-Adap Inter 3, 193–220 (1993).

Download citation

Key words

  • adaptive interface applications
  • hypertext
  • user models
  • human-computer interaction
  • associative matrices
  • intelligent information retrieval
  • relevance feedback