Advertisement

Journal of Statistical Physics

, Volume 31, Issue 3, pp 519–563 | Cite as

Coagulation equations with gelation

  • E. M. Hendriks
  • M. H. Ernst
  • R. M. Ziff
Articles
  • 246 Downloads

Abstract

Smoluchowski's equation for rapid coagulation is used to describe the kinetics of gelation, in which the coagulation kernelK ij models the bonding mechanism. For different classes of kernels we derive criteria for the occurrence of gelation, and obtain critical exponents in the pre- and postgelation stage in terms of the model parameters; we calculate bounds on the time of gelationt c , and give an exact postgelation solution for the modelK ij =(ij ω ) (ω>1/2) andK ij =a i+j (a>1). For the modelK ij =i ω +j ω (ω<1, without gelation) initial solutions are given. It is argued that the kernelK ij ij ω with ω≃1−1/d (d is dimensionality) effectively models the sol-gel transformation in polymerizing systems and approximately accounts for the effects of cross-linking and steric hindrance neglected in the classical theory of Flory and Stockmayer (Ω=1). For allΩ the exponents,t=Ω+3/2 andσ=Ω−1/2,γ=(3/2−Ω)/(Ω − 1/2) andΒ=1, characterize the size distribution, at and slightly below the gel point, under the assumption that scaling is valid.

Key words

Smoluchowski equation coagulation polymerization solgel phase transition gelation percolation critical exponents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Ziff, E. M. Hendricks, and M. H. Ernst,Phys. Rev. Lett. 49:593 (1982).Google Scholar
  2. 2.
    R. L. Drake, inTopics in Current Aerasol Research, Vol. 3, Pt. 2, G. M. Hidy and J. R. Brock, eds. (Pergamon Press, New York, 1972).Google Scholar
  3. 3.
    F. Leyvraz and H. R. Tschudi,J. Phys. A: Math. Gen. 14:3389 (1981).Google Scholar
  4. 4.
    F. Leyvraz and H. R. Tschudi,J. Phys. A: Math. Gen. 15:1951 (1982).Google Scholar
  5. 5.
    P. J. Flory,Principles of Polymer Chemistry (Cornell University, Ithaca, New York, 1953), Chap. 9.Google Scholar
  6. 6.
    W. H. Stockmayer,J. Chem. Phys. 11:45 (1943).Google Scholar
  7. 7.
    K. Dusek,Polymer Bull. 1:523 (1979).Google Scholar
  8. 8.
    R. M. Ziff,J. Stat. Phys. 23:241 (1980).Google Scholar
  9. 9.
    R. M. Ziff and G. Stell,J. Chem. Phys. 73:3492 (1980).Google Scholar
  10. 10.
    R. J. Cohen and G. B. Benedek,J. Phys. Chem. 86:3696 (1982); G. v. Schulthess, G. B. Benedek, and R. W. de Blois,Macromolecules 13:940 (1980).Google Scholar
  11. 11.
    A. Lushnikov,J. Colloid Interface Sci. 45:549 (1973);48:400 (1974);54:94 (1975).Google Scholar
  12. 12.
    W. White,J. Colloid Interface Sci. 87:204 (1982).Google Scholar
  13. 13.
    J. B. Mcleod,Quart. J. Math. 13:119 (1962);13:192 (1962);13:283 (1962).Google Scholar
  14. 14.
    W. White,Proc. Am. Math. Soc. 80:273 (1980).Google Scholar
  15. 15.
    D. Stauffer,Phys. Rep. 54:1 (1979).Google Scholar
  16. 16.
    D. Stauffer, A. Coniglio, and M. Adam, inAdvances in Polymer Science, Vol. 44, p. 103, K. Dušek, ed. (Springer-Verlag, Berlin, 1982).Google Scholar
  17. 17.
    J. W. Essam,Rep. Progr. Phys. 43:833 (1980).Google Scholar
  18. 18.
    H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, inReal Space Renormalization, T. W. Burkhard and J. M. J. van Leeuwen, eds. (Springer-Verlag, Berlin, 1982), Chap. 7.Google Scholar
  19. 19.
    H. J. Herrmann, D. R. Landau, and D. Stauffer,Phys. Rev. Lett. 49:412 (1982).Google Scholar
  20. 20.
    W. Schmidt and W. Burchard,Macromolecules 14:370 (1981).Google Scholar
  21. 21.
    M. Abramowitz and I. Stegun,Handbook of Mathematical Functions (Dover, New York, 1974), p. 14.Google Scholar
  22. 22.
    K. Rektorys,Survey of Applicable Mathematics (Iliffe Books, London, 1969), p. 1252.Google Scholar
  23. 23.
    J. Silk and S. D. White,Astrophys. J. 223:L59 (1978).Google Scholar
  24. 24.
    W. F. Ames,Nonlinear Ordinary Differential Equations in Transport Processes (Academic Press, New York, 1974).Google Scholar
  25. 25.
    G. W. Bluman and J. D. Cole,Similarity Methods for Differential Equations (Springer, New York, 1974).Google Scholar
  26. 26.
    M. H. Ernst, inStudies in Statistical Mechanics X, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1982).Google Scholar
  27. 27.
    E. Ruckenstein and B. Pulvermacher,AIChE. J. 19:356 (1973).Google Scholar
  28. 28.
    M. E. Fisher,Physics 3:225 (1967); D. Stauffer, C. S. Kiang, and G. H. Walker,J. Stat. Phys. 3:323 (1971).Google Scholar
  29. 29.
    H. Franke,Z. Phys. B 45:247 (1981).Google Scholar
  30. 30.
    P. Manneville and L. de Seze, inNumerical Methods in the Study of Critical Phenomena, I. Della Dora, J. Demongeot, and B. Lacolle, eds. (Springer, Berlin, 1981).Google Scholar
  31. 31.
    H. Gould and Holl,J. Phys. A 14:L443 (1981).Google Scholar
  32. 32.
    S. K. Friedlander,Smoke, Dust and Haze (Wiley, New York, 1977).Google Scholar
  33. 33.
    J. E. Robinson,Phys. Rev. 83:678 (1951).Google Scholar
  34. 34.
    R. M. Ziff,Phys. Rep. 32:216 (1977).Google Scholar
  35. 35.
    R. M. Noyes, inProgress in Reaction Kinetics I, G. Porter, ed. (Pergamon Press, Oxford, 1961), Chap. 5.Google Scholar
  36. 36.
    J. D. Klett,J. Atmosph. Sci. 32:380 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • E. M. Hendriks
    • 1
  • M. H. Ernst
    • 1
  • R. M. Ziff
    • 2
  1. 1.Institut voor Theoretische FysicaRijksuniversiteit UtrechtThe Netherlands
  2. 2.Department of Mechanical EngineeringState University of New YorkStony Brook

Personalised recommendations